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Abstract

We shall propose a new computational scheme with the asymptotic
method to achieve variance reduction of Monte Carlo simulation for numeri-
cal analysis especially in finance. We not only provide general scheme of our
method, but also show its effectiveness through numerical examples such
as computing optimal portfolio and pricing an average option. Finally, we
show mathematical validity of our method applying Malliavin calculus.
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1 Introduction

We propose a new method to increases efficiency of Monte Carlo simulation.
We utilize the analytic approximation based on the asymptotic method to
achieve variance reduction of Monte Carlo simulation especially for numer-
ical problems in finance. The idea of the method is as follows; Supppose
that F (w) is a Wiener functional and our objective is the evauation of the
expectation of F (w). That is,

V := E[F (w)].

A typical estimate of V may be obtained by a naive Monte Carlo simulation
based on Euler-Maruyama approximation. That is,

V(n,N ) =
1
N

N∑
j=1

[F ]j ,

where [Z]j (j = 1, ..., N ) denote independent copies of the random variable
Z. We introduce a modified estimator V∗(n,N ) defined by

V∗(n,N ) = E[F̂ ] +
1
N

N∑
j=1

[
F − F̂

]
j

where E[F̂ ] is assumed to be analytically known. Intuitively, if we are able to
find F̂ such that the errors of [F ]j and [F̂ ]j, that is, [F ]j−V and [F̂ ]j−E[F̂ ]
take close numerical values for each independent copy j, then V∗(n,N ) be-
comes a better estimate since the error of each j in V∗(n,N ) which is rep-
resented by the difference of the errors of [F ]j and [F̂ ]j becomes small. The
asymptotic method provides such F̂ . That is, F̂ obtained by the asymptotic
method has a a strong correlation with F , and E[F̂ ] is evaluated analytically.
In this sense, the method is somewhat similar to control variate technique.
(See chapter 3 of Robert and Casella(2000) on control variate technique for
instance.) However, the main difficulty in the control variate technique is
that it is generally difficult to find F̂ strongly correlated with F whose ex-
pectation E[F̂ ] can be analytically obtained. Our method overcome this
problem since the asymptotic method allow us to find such F̂ in the unified
way; the method can be applied to a broad class of Ito processes in the simi-
lar manner. (For details on this point, see Takahashi(1995,1999), Takahashi
and Yoshida(2001), Kunitomo and Takahasi(2001, 2003), and others listed
in their references.) We also note that our method may be used together
with other accelation methods such as antithetic variables technique to pur-
sue further variance reduction of Monte Carlo simulation. In the following
sections, we will show this idea more rigorously and concretely.

In the next section, we will explain our new scheme and state main the-
orems. In section 3, we will give two examples to illustrate our method in
finance; computing the market price of risk component in the optimal port-
folio problem and pricing an average option. In section 4, we will examine
numerical examples for the problems discussed in section 3. In sections 5
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and 6, we will show the proofs of theorems stated in section 2; we will first
provide proofs for smooth cases in section 5, and extend it to non smooth
cases in section 6 applying Malliavin calculus. In appendix, we will discuss
mathematical validity of our asymptotic method with square-root processes
used in the numerical examples.

2 Monte Carlo Simulation with the Asymptotic

method

Let (Ω,F , P ) probability space and T∈ (0,∞) denotes some fixed time hori-
zon. w(t) = {(w1(t), · · · , wr(t))∗; t ∈ [0, T ]} is Rr-valued Brownian motion
defined on (Ω,F , P ), and {Ft}, 0 ≤ t ≤ T stands for P-augmentation of
the natural filtration, Fw

t = σ(w(s); 0 ≤ s ≤ t). Suppose that a RD-valued
process Xu(t, x) (0 ≤ t ≤ u ≤ T, x ∈ RD) satisfy the stochastic integral
equation:

X ε
u(t, x) = x+

∫ u

t
V0(X ε

s(t, x), ε)ds+
∫ u

t
V (X ε

s(t, x), ε)dws. (1)

where ε is a parameter ε ∈ (0, 1].

We first state the conditions on the process Xu(t, x) (0 ≤ t ≤ u ≤ T, x ∈
RD): We assume that (V0, V ) is graded according to RD = Rd1 × · · ·×Rdq

by using the follwing definition of grading:

[Definition: Grading]
A grading of RD is a decomposition Rd1 × · · · × Rdq with

∑q
i=1 di = D.

The coordinates of a point in RD are always arranged in an increasing order
along the subspaces Rdi . We set M0 = 0 and Ml =

∑l
i=1 di for 1 ≤ l ≤ q.

We say that the coefficients (V0, V ) are graded according to the grading
RD = Rd1 × · · · × Rdq if V i

0 (x, ε) and V i
α(x, ε), α = 1, 2, · · · , r depend on x

only through the coordinates (xm)1≤m≤Ml
when Ml−1 < i ≤ Ml.

In this setting we also assume that Vα ∈ C∞
↑ (RD×(0, 1];RD), α = 0, 1, · · · , r,

where C∞
↑ (RD × (0, 1];E) denotes a class of smooth mappings f : RD ×

(0, 1] → E whose derivatives ∂n
x ∂

k
ε f(x, ε) are of polynomial growth orders

for n ∈ ZD
+ and k ∈ Z+. We further suppose that ∂n

x̂l
V i
α(x, ε), α = 0, 1, · · · , r

are bounded for n ∈ Zdl
+ such that |n| ≥ 1 if x̂l consists of coordinates from

(Ml−1 + 1)-th to Ml-th and Ml−1 < i ≤ Ml for some l ≤ q.

Then, due to Chapter II-5 of Bichteler etal.(1987), Xu(t, x) (0 ≤ t ≤
u ≤ T, x ∈ RD) admits the unique solution and E[|Xu|p] < ∞ for all p ≥ 1.
We finally note that the Markovian system of SDEs (15) in section 3 is an
example of this class.

2.1 Smooth Cases

Suppose that f ∈ Ck
↑ (R

D;R) for some large k where Ck
↑ (R

D;R) denotes
a class of k times continuously differentiable functions f : RD → R whose
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derivatives are of polynomial growth orders. For a stochastic approximation
to V := E[f(X ε

T (0, x))], an estimator by naive Monte Carlo simulation may
be expressed as

V(n,N ) =
1
N

N∑
j=1

[
f(X̄ ε

T )
]
j . (2)

Here, [Z]j (j = 1, ..., N) denote independent copies of the random variable
Z, and the Euler-Maruyama scheme X̄ ε is defined by:

X̄ ε
u = x+

∫ u

0
V0(X̄ ε

η(s), ε)ds+
∫ u

0
V (X̄ ε

η(s), ε)dws, (3)

where η(s) = [ns/T ]T/n.

In the sequel, we will consider a modified estimator for V:

V∗(ε, n, N ) = E[f(X [0]
T (0, x))] +

1
N

N∑
j=1

[
f(X̄ ε

T )− f(X̄ [0]
T )
]
j

(4)

Intuitively, we expect that V∗(ε, n, N ) is a better estimate if
[
f(X̄ ε

T )
]
j −

V and [f(X̄ [0]
T )]j − E[f(X [0]

T (0, x))] take close values for each independent
copy j since they are canceled with each other in each j of our estima-
tor V∗(ε, n, N ). We can easily notice it by observing that the error of
V∗(ε, n, N ) is repesented by the sample average of the difference between
deviations of

[
f(X̄ ε

T )
]
j and [f(X̄ [0]

T )]j from their true values: That is,

V∗(ε, n, N )−V =
1
N

N∑
j=1

[{f(X̄ ε
T )− E[f(X ε

T (0, x))]}

−{f(X̄ [0]
T )−E[f(X [0]

T (0, x))]}
]
j
.

Our main objective is to state this intuition more rigorously. Starting with
a naive estimator V(n,N ), we have the following theorem:

Theorem 1 Suppose that f ∈ Ck
↑ (R

D;R) for some large k. Then,

(i) the bias of V(n,N ) denoted by Bias[V(n,N )] is

Bias[V(n,N )] = E[V(n,N )]−V = O(
1
n
),

(ii) the variance of V(n,N ) denoted by Var[V(n,N )] is

Var[V(n,N )] =
1
N

Var[f(X̄ ε
T )] = O(

1
N
),

and consequently,

(iii) the mean-square-error denoted by MSE[V(n,N )] is

MSE[V(n,N )] := E[(V(n,N )−V)2] = O(
1
n2

+
1
N
).
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where The bias of an estimator Ẑ for Z denoted by Bias[Ẑ] is defined as

Bias[Ẑ] := E[Ẑ]− Z.

Proof: See section 5.1.

For our modified estimator, we can obtain a main theorem:

Theorem 2 Suppose that f ∈ Ck
↑ (R

D;R) for some large k. Then,

(i) the bias of V∗(ε, n, N ) is given by

Bias[V∗(ε, n, N )] = O(
ε

n
),

(ii) the variance of V∗(ε, n, N ) is given by

Var[V∗(ε, n, N )] =
1
N

Var[f(X̄ ε
T )− f(X̄0

T )] = O(
ε2

N
),

and consequently,

(iii) the mean-square-error is given by

MSE[V∗(ε, n, N )] = O(ε2
(
1
n2

+
1
N

)
).

Proof: See section 5.2.

Remark 1 Though it is not so rigorous since V∗(ε, n, N ) is random, we
may roughly regard V∗(ε, n, N ) approximating V with the same order of
precision as the expansion of V up to the ε-order if n ≥ O

(
ε−1
)
and N ≥

O(ε−2).

Comparing V∗(ε, n, N ) with V(n,N ) in mean-squre-error, we see that

MSE[V(n,N )]−MSE[V∗(ε, n, N )] ≥ 1
N

{
Var[f(X̄ ε

T )] −Var[f(X̄ ε
T )− f(X̄0

T )]
}

−θ1(ε, n)
≥ 1

N
Var[f(X̄ ε

T )] − θ2(ε, n, N ),

where

0 ≤ θ1(ε, n) = O

((
ε

n

)2
)

and

0 ≤ θ2(ε, n, N ) = O

(
ε2
(
1
n2

+
1
N

))
.

Then, we expect that θ2(ε, n, N ) that is the order of ε2, is small relative to
1
N Var[f(X̄ ε

T )] and hence, that MSE of V∗(ε, n, N ) is the smaller than MSE
of V(n,N ).
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2.2 Non Smooth Cases

If f is not smooth, in particular, f belongs to the class of Borel measurable
functions with polynomial growth, we can still obtain the similar results as
in the smooth cases under appropriate assumptions.

We will consider a stochastic approximation to V := E[f(X ε
T (0, x))]. An

estimator may be obtained by a naive Monte Carlo simulation. However,
in this case, Malliavin calculus is involved because of non smoothness of f .
In order to apply Malliavin calculus effectively, we take a modified Euler-
Maruyama scheme following Kohatsu-Higa(1996). That is, we compute

V(n,N ) =
1
N

N∑
j=1

[
f

(
X̄ ε

T +
1
n
ŵT

)]
j
, (5)

instead of (2); 1
N

∑N
j=1

[
f(X̄ ε

T )
]
j, where {ŵt; t ∈ [0, T ]} is a Wiener process

independent of X ε. Intuitively, randomness of ŵ admits non-degeneracy of
related Malliavin covariances under appropriate conditions. In fact, we use
Malliavin calculus over product measure Pw⊗P ŵ.

Similarly, our new estimator (4) is modified as follows:

V ∗(ε, n, N ) = E[f(X [0]
T (0, x))] +

1
N

N∑
j=1

[
f

(
X̄ ε

T +
1
n
ŵT

)
− f

(
X̄

[0]
T +

1
n
ŵT

)]
.

(6)

To justifiy this scheme, we first make the following asuumption:

[A2]
sup
ε

E[|σXε
T (0,x)|−p] < ∞ for all p > 1.

where σXε
T (0,x) denotes Malliavin covariance of X ε

T (0, x).
Sometimes, it is difficult to check the condition [A2]. Then in stead

of [A2], we may put the following condition [A3] which is practically more
convenient.

[A3]
E[|σ

X
[0]
T (0,x)

|−p] < ∞ for all p > 1

where σ
X

[0]
T (0,x)

denotes Malliavin covariance of X [0]
T (0, x).

Then, we can obtain the similar results in the non smooth cases correspond-
ing to theorems 1 and 2 in the smooth cases. In particular, the similar result
to theorem 2 is obtained under condition [A2] or condition [A3]. The next
theorem is a main result.

Theorem 3 f belongs to the class of Borel measurable functions with poly-
nomial growth. Then,
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(i) the bias of V∗(ε, n, N ) is given by

Bias[V∗(ε, n, N )] = O(
ε

n
), under [A2]

or

Bias[V∗(ε, n, N )] = O

(
ε

n

)
+O(εK) for all K > 0 under [A3],

(ii) the variance of V∗(ε, n, N ) is given by

Var[V∗(ε, n, N )] =
1
N

Var[f(X̄ ε
T )− f(X̄0

T )] = O(
ε2

N
), under [A2] and [A3],

and consequently,

(iii) the mean-square-error is given by

MSE[V∗(ε, n, N )] = O(ε2
(
1
n2

+
1
N

)
) under [A2]

or

MSE[V∗(ε, n, N )] = O(ε2
(
1
n2

+
1
N

)
) +O(εK) for all K > 0 under [A3].

Proof: See section 6.

3 Examples

In this section, we take two examples from finance to illustrate our method.

3.1 Example 1:Computation of Optimal Portfolio for Invest-
ment

The first example is computation of the Market Price of Risk component
of an optimal portfolio in multiperiod setting. (Hereafter, we call the com-
ponent MPR-hedge following a convention in finance.) We note that the
example belongs to smooth cases in section 2.1. We start with basic set up
of the financial market.

Let (Ω,F , P ) probability space and T∈ (0,∞) denotes some fixed time
horizon of the economy. w(t) = {(w1(t), · · · , wr(t))∗; t ∈ [0, T ]} is Rr-valued
Brownian motion defined on (Ω,F , P ) and {Ft}, 0 ≤ t ≤ T stands for P-
augmentation of the natural filtration, Fw

t = σ(w(s); 0 ≤ s ≤ t). Here,
we use the notation of x∗ as the transpose of x. For t ∈ [0, T ], the price
processes of risky asstes and a locally riskless asset are described as follows.

dSi = Si(t)[bi(t)dt+
r∑

j=1

σij(t)dwj(t)]; Si(0) = si i = 1, · · · , r (7)

dS0 = γ(t)S0(t)dt; S0(0) = 1
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where γ(t),bi(t), and σij(t) are progressively measurable with respect to
{Ft}. bi(t) and σij(t) satisfy the integrability conditions:∫ T

0
{|b(t)|+ |σ(t)|2}dt < ∞

where |b(t)| := (
∑r

i=1 |bi(t)|2)
1
2 and |σ(t)|2 :=

∑r
i,j=1 |σij(t)|2. σ(t) is as-

sumed to be non-singular Lebesgue-almost-every t ∈ [0, T ], a.s. Then, Rr-
valued process θ(t), t ∈ [0, T ], the market price of risk process is well-defined
as θ(t) := σ−1(t)[b(t) − γ(t),1]. We further assume that γ(t) and θi(t),
i = 1, 2, · · · , r are bounded.

Next, we illustrate the problem of a (small) investor’s optimal portfo-
lio for investment in the multiperiod setting. Given the financial market
described above, an investor’s wealth W (t) at time t ∈ [0, T ] is described as

dW (t) = [γ(t)W (t)− c(t)]dt+ π(t)∗[(b(t)− γ(t)1)dt+ σ(t)dw(t)];

where W (0) =W > 0 is the initial capital(wealth),
c(t) denotes the consumption rate and π(t) = {πi(t)}∗i=1,···,r denotes the
portfolio, which satisfy the integrability condition;

∫ T

0
{|π(t)|2 + c(t)}dt < ∞ a.s.

LetA(W ) denote the set of stochastic processes (π, c) which generateW (t) ≥
0 for all t ∈ [0, T ] given W (0) = W . If (π, c) ∈ A(W ), (π, c) is called ad-
missible for W . Then, the problem of an investor’s optimal portfolio for
investment is formulated as follows;

sup
(π,c)∈A(W )

E[U (W (T ))] (8)

where E[·] denotes the expectation operator under P , and U represents a
utility function such that

U : (0,∞)→ R, (9)
a strictly increasing, strictly concave function of class C2

with U(0+) ≡ lim
c↓0

U(c) ∈ [−∞,∞), U
′
(0+) ≡ lim

c↓0
U

′
(c) = ∞

and U
′
(∞) ≡ lim

c→∞U
′
(c) = 0.

From now on, we will concentrate on a Markovian model. We consider a
Wiener space on [t, T ] for some fixed t ∈ [0, T ] and assume that all random
variables will be defined on it. Let X ε

u be a D-dimensional diffusion process
defined by the stochastic differential equation:

dX ε
u = V0(X ε

u, ε)du+ V (X ε
u, ε)dwu, X ε

t = x (10)

for u ∈ [t, T ] where ε ∈ (0, 1], V0 ∈ C∞
b (RD×(0, 1];RD), and V = (Vβ)rβ=1 ∈

C∞
b (RD × (0, 1];RD ⊗ Rr). Here C∞

b (Rd × (0, 1];E) denotes a class of
smooth mappings f : RD × (0, 1] → E whose derivatives ∂n

x∂
m
ε f(x, ε) are
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all bounded for n ∈ Zd
+ such that |n| ≥ 1 and m ∈ Z+. Note that time-

dependent-coefficient diffusion processes are included in the above equation
if we enlarge the process to a higer-dimensional one. Let Y ε

t,u be a unique
solution of the D ×D-matrix valued stochastic differential equation:


dY ε

t,u =
∑r

α=0 ∂xVα(X
ε
u, ε)Y

ε
t,udw

α
u

Y ε
t,t = I

(11)

We further assume the bounded processes γ(u)(short rate) and θ(u)(the
market price of risk) to be γ(u) = γ(X ε

u) and θ(u) = θ(X ε
u) where γ ∈

C∞
b (RD;R+) and θ ∈ C∞

b (RD;Rr). The case that b(u) = b(X ε
u) and σ(u) =

σ(X ε
u) is an example in this formulation. Next, we suppose that a utility

function is so called a power function;

U(x) =
xδ

δ
, x ∈ (0,∞), δ < 1, δ �= 0.

Then, due to Takahashi and Yoshida(2001) and Ocone and Karatzas(1991),
the optimal proportions of risky assets in given wealth W at time t, are
given by

π∗(t)/W =
1

(1− δ)
θ(x)∗σ−1(x) +

δ

(1− δ)
1

E
[
(H0,t,T )

( −δ
1−δ

)
] × (12)

E

[
(H0,t,T )

( −δ
1−δ

)

(∫ T

t
∂γ(X ε

u)Y
ε
t,udu+

r∑
α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,udw

α(u)

+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,udu

)]
V (x, ε)σ−1(x).

where the state density process, H0,t,T is defined by

H0,t,T ≡ exp

(
−
∫ T

t
θ(X ε

u)
∗dw(u)− 1

2

∫ T

t
|θ(X ε

u)|2du−
∫ T

t
γ(X ε

u)du

)
.

Next, we define the mean variance, the interest rate hedge(IR-hedge) and the
market price of risk hedge(MPR-hedge) components of the optimal portfolio
for a power utility function:

mean variance ≡ 1
(1− δ)

θ(x)∗σ−1(x)

IR-hedge ≡ δ

(1− δ)
1

E
[
(H0,t,T )

( −δ
1−δ

)
]E
[
(H0,t,T )

( −δ
1−δ

)
∫ T

t
∂γ(X ε

u)Y
ε
t,udu

]
×

V (x, ε)σ−1(x)

MPR-hedge ≡ δ

(1− δ)
1

E
[
(H0,t,T )

( −δ
1−δ

)
]E [(H0,t,T )

( −δ
1−δ

)×
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(
r∑

α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,udw

α(u)

+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,udu

)]
V (x, ε)σ−1(x). (13)

Then, we put a main assumption on the asymptotic method:

[A1] the deterministic limit condition: V (·, 0)≡ 0

Under the assumption [A1], each component of the optimal portfolio for a
power utility function in the asymptotic method up to ε order is given due
to Takahashi and Yoshida(2001):

mean variance ≡ 1
(1− δ)

θ∗(x)σ−1(x) (14)

IR-hedge ≡ ε
δ

(1− δ)

(∫ T

t
∂γ [0](u)Yt,udu

)
∂εV (x, 0)σ−1(x)

MPR-hedge ≡ ε
δ

(1− δ)2

(
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂εV (x, 0)σ−1(x).

From now on, we illustrate our scheme by using MPR-hedge component
(13). Similar method can be applied to IR-hedge component. (Note that
mean variance component is analytically obtained.)

Numerical Computation of MPR-hedge

In computation of MPR-hedge, we first consider a naive estimator by Monte
Carlo. Hereafter we set t = 0. A Markovian system of SDEs used in Monte
Carlo simulation is given as follows:


dX ε
u = V0(X ε

u, ε)du+ V (X ε
u, ε)dwu, X ε

t = x

dY ε
t,u =

∑r
α=0 ∂xVα(X

ε
u, ε)Y

ε
t,udw

α
u , Y

ε
t,t = I

dhε0,t,u = hε0,t,u[{( δ
1−δ)γ(X

ε
u) +

δ
2(1−δ)2

|θ(X ε
u)|2}du + ( δ

1−δ )θ(X
ε
u)

∗dw(u)],
hε0,t,t = 1

dηεu =
∑r

α=1 θα(X
ε
u)∂θα(X

ε
u)Y

ε
t,udu+

∑r
α=1 ∂θα(X

ε
u)Y

ε
t,udw

α(u), ηεt = 0

(15)

We note that above system of equations (15) corresponds to the equation
(1) in section 2. Then, the estimator for the denominator of MPR-hedge
(13);

E
[
(H0,t,T )

( −δ
1−δ

)
]
= E

[
hε0,t,T

]
(16)

by naive Monte Carlo simulation (2) may be expressed as

1
N

N∑
j=1

[
h̄ε0,t,T

]
j
. (17)

9



Similarly, the estimator for the numerator of MPR-hedge (13);

E

[
(H0,t,T )

( −δ
1−δ

)

(
r∑

α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,udw

α(u) +
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,udu

)]

(18)

by naive Monte Carlo (2) may be expressed as

1
N

N∑
j=1

[
h̄ε0,t,T × η̄εT

]
j
. (19)

Next, we consider modified estimators for (16) and (18) in the following.
First, we note that

(H [0]
0,t,T )

( −δ
1−δ

) = h
[0]
0,t,T = C × ξ

[0]
T

where
ξ
[0]
T = e−

1
2
( δ
1−δ

)2
∫ T

t
|θ[0](u)|2du+( δ

1−δ
)
∫ T

t
θ[0](u)dw(u)

and

C ≡ exp

{(
δ

1− δ

)∫ T

t
γ [0](u)du+

δ

2(1 − δ)2

∫ T

t
|θ[0](u)|2du

}
.

A modified estimator for the denominator (16) is given by

E[h[0]
0,t,T ] +

1
N

N∑
j=1

{
{[h̄ε0,t,T − h̄

[0]
0,t,T ]j

}
(20)

where
E[h[0]

0,t,T ] = C,

because clearly
E[ξ[0]

T ] = 1.

Further, h̄[0]
0,t,u denotes the Euler-Maruyama scheme of h[0]

0,t,u:
 dh

[0]
0,t,u = h

[0]
0,t,u[{( δ

1−δ)γ
[0]
u + δ

2(1−δ)2
|θ[0]
u |2}du+ ( δ

1−δ )θ
[0],∗
u dw(u)],

h
[0]
0,t,t = 1.

(21)

In the similar way, a modified estimator for the numerator (18) is given by

E[h[0]
0,t,uη

[0]
T ] +

1
N

N∑
j=1

{[
h̄ε0,t,T × η̄εT − h̄

[0]
T × η̄

[0]
T

]
j

}
(22)

where

E[h[0]
0,t,uη

[0]
T ] = C ×

(
1

1− δ

)[ r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

]
,

and η̄
[0]
u denotes the Euler-Maruyama scheme of η[0]

u :

dη[0]
u =

r∑
α=1

θα(X [0]
u )∂θα(X [0]

u )Y [0]
t,udu+

r∑
α=1

∂θα(X [0]
u )Y [0]

t,udw
α(u), η

[0]
t = 0

(23)
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3.2 Example 2:Pricing of an Average Call Option

The second example is pricing an average call option which belongs to
non smooth cases in section 2.2. Given filtered probability space satisfy-
ing usual conditions (Ω,F , P, {Ft}0≤t≤T ) with one-dimensional Brownian
motion {wt; 0 ≤ t ≤ T}, where P represents a so called equivalent Martin-
gale measure in finance. The underlying asset price process St, 0 ≤ t ≤ T is
assumed to follow a one-dimensional diffusion process:

dSε
t = γSε

tdt+ εσ(Sε
t , t)dwt, S

ε
0 = S0(> 0) (24)

where ε ∈ (0, 1], σ ∈ C∞
b (R+ × [0, T ];R+), γ is a positive constant. The

payoff of an average call option with strike price K(> 0) and with the
maturity T is given by

V (T ) =
(
1
T
Zε
T −K

)
+
. (25)

Then, to obtain the price of an average call option at t = 0, we evaluate

V = e−γTE

[(
1
T
Zε
T −K

)
+

]

given that 


dSε
t = γSε

tdt+ εσ(Sε
t , t)dwt, S

ε
0 = S0(> 0)

dZε
t = Sε

tdt, Z
ε
0 = 0.

(26)

(For details of average options, see Kunitomo and Takahashi(1992) and He
and Takahashi(2000) for instance.) It is re-expressed by

V = e−γT εE

[(
1
T
X ε

2T + y

)
+

]
(27)

where

X ε
1t ≡ Sε

t − S
[0]
t

ε
,

X ε
2t ≡ Zε

t − Z
[0]
t

ε
,

y ≡
1
T Z

[0]
T −K

ε
,

S
[0]
t = eγtS0,

Z
[0]
t =

S0

γ
(eγt − 1).

We also notice that X ε
1t and X ε

2t satisfy SDEs:


dX ε
1t = γX ε

1tdt+ σ(εXε
1t + S

[0]
t , t)dwt, X

ε
10 = 0

dX ε
2t = X ε

1tdt, X
ε
20 = 0

(28)

11



Next, we assume the condition:

Σ ≡
∫ T

0

1
T 2

[
e(T−u) − 1

γ

]2
σ2(S [0]

u , u)du > 0. (29)

Under the condition (29), The asymptotic expansion of V upto ε-order is
obtained by

V = e−γT ε

(
yΦ
(

y√
Σ

)
+Σ

1√
2πΣ

exp

(
−y2

2Σ

))
+ o(ε).

Then, a modified estimator for (27) is given by

e−γTE

[(
1
T
X

[0]
2T + y

)
+

]
+
1
N

N∑
j=1



[
e−γT

(
1
T
X̄ ε

2T + y +
1
n
ŵT

)
+
− e−γT

(
1
T
X̄

[0]
2T + y +

1
n
ŵT

)
+

]
j




(30)
where

e−γTE

[(
1
T
X

[0]
2T + y

)
+

]
= e−γT

{
yΦ
(

y√
Σ

)
+ Σ

1√
2πΣ

exp

(
−y2

2Σ

)}
.

(31)
X̄

[0]
it , i = 1, 2 denote the Euler-Maruyama scheme of X [0]

it , i = 1, 2, which is
given by




dX
[0]
1t = γX

[0]
1t dt+ σ(S [0]

t , t)dwt, X
[0]
10 = 0

dX
[0]
2t = X

[0]
1t dt, X

[0]
20 = 0.

(32)

Here, Φ(x) denotes the standard normal distribution evaluated at x.

4 Numerical Examples

4.1 Example 1:MPR-hedge

In this example, we suppose that D = 2, that is X ε
u = (X ε(1)

u , X
ε(2)
u )∗ and

that they satisfy the following stochastic differential equations:



dX
ε(1)
u = κ1(X̄ ε(1) −X

ε(1)
u )du− ε(Xε(1)

u )
1
2dwu; X

ε(1)
0 = γ0

dX
ε(2)
u = κ2(X̄ ε(2) −X

ε(2)
u )du+ εσ2dwu; X

ε(2)
0 = θ0

(33)

where w denotes one-dimensional Brownian motion.

Remark 2 The volatility function of X ε(1) is not smooth at the origin and
we need to use a smoothed version of the square root process at the origin
in our framework. However, we can show that the smoothing does not make
significant differences and the effects are negligible in the small disturbance
asymptotic theory. This is also true for Example 2 in the next subsection.
See appendix 5.4 for the rigorous argument on this point.
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We also suppose that there exist one risky asset and a locally riskless asset
and assume that γ(X ε

u) and θ(X ε
u) are smooth modifications of γ̂(X ε

u) and
θ̂(X ε

u) respectively where γ̂(X ε
u) = min{X ε(1)

u ,M1}, θ̂(X ε
u) = min{X ε(2)

u ,M2},
andMi,i = 1, 2 are some large positive integers. Then, the dynamics of both
assets are described by




dSε
u = Sε

u(X
ε(1)
u + σX

ε(2)
u )du + Sε

uσdwu, Sε(0) = s

dSε
0u = Sε

0uX
ε(1)
u du, Sε

0(0) = 1.
(34)

Further, we set the values of the parameters for X ε
u following Detemple et

al.(2000), which were obtained by statistcal estimation; κ1 = 0.0824, γ0 =
X̄ ε(1) = 0.06, ε = 0.03637, κ2 = 0.6950, X̄ ε(2) = 0.0871, σ2 = 0.21/0.03637,
θ0 = 0.1, σ = 0.2.

The benchmark value of each component in the optimal portfolios is obtained
by naive Monte Carlo simulations based on the Euler-Maruyama approxi-
mation; the number of time steps n is 365 and the number of trials N is
1,000,000 in each Monte Carlo simulation.

Mean variance, MPR-hedge and IR-hedge components and the sum of
them denoted by total demand are listed in table 1-4; the results for the
asymptotic method are listed in tables 1 and 3 while the results for the
Monte Carlo simulation are listed in tables 2 and 4. In addition, tables 1
and 2 show the results for investment horizons T = 1, 2, 3, 4, 5 when the
Arrow-Pratt measure of relative risk aversion R(≡ 1− δ) is fixed at 2, and
tables 3 and 4 show the results for R = 0.5, 1, 1.5, 4, 5 when T = 1. We can
observe that the results of asymptotic method and of Monte carlo simulation
are so close for IR-hedge while there is some difference for MPR-hedge, but
the difference is small relative to the total demand. We also notice that
the second order scheme gives substantial improvement comparing with the
first order scheme which is equivalent to the case that we ignore MPR-hedge
and IR-hedge components. (Note that O(1) for MPR-hedge and IR-hedge
components are zero.)

To show that our new method to increase efficiency of Monte Carlo
simulations is effective, we take the case that MPR-hedge with T = 1, and
R = 0.5, in which the diviation of the value by the asymptotic method upto
ε-order relative to the benchmark value is the largest. We follow the method
illustrated in the previous section.

Figure 1 shows the comparison of the convergence between our modified
estimator and naive one for MPR-hedge (13): hybrid denotes the modified
estimator expressed as the equation (22) divided by (20), that is (22)/(20)
while mc denotes the naive estimator expressed as the equation (19) divided
by (17), that is (19)/(17). In the figure 1, the horizontal axis is the number
of trials N which varies from 1000 to 100,000, and the vertical axis is the
errors(%) of mc and hybrid relative to their benchmark values. We observe
that hybrid provides much faster convergence than mc. To examine our
method more closely, we compare the covergence of three estimators for nu-
merator of MPR-hedge; num-hybrid denotes the modified estimator, num0-
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mc denotes the estimator for ε = 0 in (22) that is, 1
N

∑N
j=1

[
h̄

[0]
T × η̄

[0]
T

]
j
, and

num-mc denotes the naive estimator (19). Figure 2 clarifies that the errors
of num-mc and num0-mc are canceled with each other, which results in the
faster convergence of the modified estimator num-hybrid.

4.2 Example 2:An Average Call Option

On the second example, we take so called square-root process as the price
process of the underlying asset:


dSε

t = γSε
tdt + ε

√
Sε
tdwt, S

ε
0 = S0

dZε
t = Sε

tdt, Z
ε
0 = 0

(35)

Then, the normalized price processes, X ε
it, i = 1, 2 are expressed as


dX ε

1t = γX ε
1tdt+

√
εXε

1t + eγtS0dwt, X
ε
10 = 0

dX ε
2t = X ε

1tdt, X
ε
20 = 0,

(36)

and Σ is given by

Σ =
S0

γ3T 2
(e2γT − 2γeγT − 1). (37)

Finally, X [0]
it , i = 1, 2 (ε = 0) are obtained by




dX
[0]
1t = γX

[0]
1t dt+ e

γt
2
√
S0dwt, X

[0]
10 = 0

dX
[0]
2t = X

[0]
1t dt, X

[0]
20 = 0.

(38)

Table 5 shows parameters’ values and computational result in the numerical
example; S0 = 5.00. ε = 0.671 which is determined such that the coefficient
of the diffusion term is equivalent to that of log-normal process at time 0
where the volatility is 30% that is,

ε
√
S0 = σS0, σ = 0.3.

γ = 0.05(5%), T = 1.0(1 year), and K = 5.65(7.5% OTM). V denotes the
benchmark value obtained by 107 trials of Monte Carlo simulation while V [0]

denotes the value obtained by the asymptotics expansion upto ε-order, that
is the equation (31), and it deviates from the benchmark value by −5.2%.

Table 6 shows average(avg), root-mean-square-error(rmse), maximum(max),
and minimum(min) of error(%) of three estimators relative to their bench-
mark values for 100 cases; hybrid denotes the modified estimator given by
the equation (30), mc denotes the estimator by naive Monte Carlo for (27),
that is

e−γT


 1
N

N∑
j=1

[(
1
T
X̄ ε

2T + y +
1
n
ŵT

)
+

]
j


 ,
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and mc-asymp denotes the estimator by naive Monte Carlo for (31), that is

e−γT


 1
N

N∑
j=1

[(
1
T
X̄

[0]
2T + y +

1
n
ŵT

)
+

]
j


 .

Figure 3 shows the errors of three estimators for each 100 cases; the hori-
zontal axis is the case number from 1 to 100 while the vertical axis is the
error(%) of those estimators relative to their benchmark values. Clearly, we
observe that our estimator is much better than the naive one for each case,
and the figure clarifies that the errors of the estimators mc and mc-asymp
are canceled with each other, which contributes to the better performance
of our modified estimator hybrid for each case. Finally, figure 4 shows the
comparison of the convergence of three estimators, and the same observation
also holds in this case as in Figure 3.

5 Proofs of Theorems 1 and 2

5.1 Proof of Theorem 1

We only prove (i). (ii) and (iii) are easy.

Let

uεi(x) = E [f(X ε
T (ti, x))] . (39)

where ti = iT/n, i = 0, 1, 2, · · · , n. Obviously, uεn(x) = f(x), and

uεn(X̄
ε
tn) = uεn(X̄

ε
T ) = f(X̄ ε

T ),
uε0(X̄

ε
t0) = uε0(x) = E[f(X̄ ε

T (0, x))].

Define ∆ε
i as

∆ε
i := E[uεi+1(X̄

ε
ti+1

)] −E[uεi(X̄
ε
ti)]. (40)

Then,

E[f(X̄ ε
T )] −E[f(X ε

T (0, x))] =
n−1∑
i=0

∆ε
i .

Next, define an operator Lε which maps a function u(x) to a function Lε
yu(x)

by

Lε
yu(x) =

D∑
i=1

V
(i)
0 (y, ε)∂iu(x) +

1
2

D∑
i,j=1

r∑
α=1

V (i)
α V (j)

α (y, ε)∂i∂ju(x).

Similarly, define Lε by

Lεu(x) =
D∑
i=1

V
(i)
0 (x, ε)∂iu(x) +

1
2

D∑
i,j=1

r∑
α=1

V (i)
α V (j)

α (x, ε)∂i∂ju(x).
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By the definition of the flow, applying the Itô formula and by the measura-
bility of X̄ ε

ti , we obtain:

∆ε
i = E

[
uεi+1

(
X̄ ε

ti+1

)]
−E

[
uεi+1

(
X ε

ti+1

(
ti, X̄

ε
ti

))]
= E

[∫ ti+1

ti

Lε
X̄ε

ti

uεi+1(X̄
ε
t )dt−

∫ ti+1

ti

Lεuεi+1(X
ε
t (ti, X̄

ε
ti
))dt
]

= E
[∫ ti+1

ti
{Lεui+1(X̄ ε

ti)−Lεuεi+1(X
ε
t (ti, X̄

ε
ti))}dt

]

+E
[∫ ti+1

ti

{Lε
X̄ε

ti

uεi+1(X̄
ε
t )− Lε

X̄ε
ti

uεi+1(X̄
ε
ti)}dt

]

= −
∫ ti+1

ti

E[Lεuεi+1(X
ε
t (ti, X̄

ε
ti))−Lεui+1(X̄ ε

ti)]dt

+
∫ ti+1

ti

E[Lε
X̄ε

ti

uεi+1(X̄
ε
t )− Lε

X̄ε
ti

uεi+1(X̄
ε
ti
)]dt

Hence,

∆ε
i = −

∫ ti+1

ti

∫ t

ti

E[aεi+1(X
ε
s(ti, X̄

ε
ti))]dsdt (41)

+
∫ ti+1

ti

∫ t

ti

E[bεi+1(X̄ti; X̄
ε
s)]dsdt

where

aεi+1(x) := Lε(Lεuεi+1(x))

and

bεi+1(y; x) := Lε
y(L

ε
yu

ε
i+1(x))(x).

In fact, aεi+1(x) is expressed as

aεi+1(x) =
D∑

k
′
=1

V
(k

′
)

0 (x, ε)∂k′{
D∑
k=1

V
(k)
0 (x, ε)∂kuεi+1(x) (42)

+
1
2

D∑
k,l=1

r∑
α=1

V (k)
α (x, ε)V (l)

α (x, ε)∂k∂luεi+1(x)}

+
1
2

D∑
k
′
,l
′
=1

r∑
α=1

V (k
′
)

α (x, ε)V (l
′
)

α (x, ε)∂k′∂l′{
D∑
k=1

V
(k)
0 (x)∂kuεi+1(x)

+
1
2

D∑
k,l=1

r∑
α=1

V (k)
α (x, ε)V (l)

α (x, ε)∂k∂luεi+1(x)},

and aεi+1(X
ε
s(ti, X̄

ε
ti)) means that aεi+1(x) is evaluated at x = X ε

s(ti, X̄
ε
ti).

bεi+1(y; x) is expressed as

bεi+1(y; x) =
D∑

k
′
=1

V
(k

′
)

0 (y, ε){
D∑
k=1

V
(k)
0 (y, ε)∂k′∂ku

ε
i+1(x) (43)
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+
1
2

D∑
k,l=1

r∑
α=1

V (k)
α (y, ε)V (l)

α (y, ε)∂k′∂k∂lu
ε
i+1(x)}

+
1
2

D∑
k′ ,l′=1

r∑
α=1

V (k
′
)

α (x)V (l
′
)

α (x){
D∑
k=1

V
(k)
0 (y, ε)∂k′∂l′∂ku

ε
i+1(x)

+
1
2

D∑
k,l=1

r∑
α=1

V (k)
α (y, ε)V (l)

α (y, ε)∂k′∂l′∂k∂lu
ε
i+1(x)},

and bεi+1(X̄ti+1; X̄
ε
s) means that b

ε
i+1(y; x) is evaluated at x = X̄ ε

s and y =
X̄ ε

ti+1
.

Note that aεi+1(x) is a ploynomial function of

V
(k1)
0 , ∂k2V

(k1)
0 , ∂k2∂l2V

(k1)
0 ,

V (k2)
α , ∂k2V

(k1)
α , ∂k2∂l2V

(k1)
α ,

uεi+1, ∂k1u
ε
i+1, ∂k1∂k2u

ε
i+1, ∂k1∂k2∂lu

ε
i+1, and ∂k1∂k2∂l1∂l2u

ε
i+1

for k1, k2, l1, l2 = 1, 2, · · · , D and α = 1, 2, · · · , r.
Note also that Vα(x) ∈ C∞

↑ (RD), α = 0, 1, · · · , r and f ∈ Ck
↑ (R

D) for some
large k.

Further, it is well known (see Chapter II-5 of Bichteler etal.(1987), for in-
stance.) that


supε supn sup0≤s≤T E[|X̄ ε

s|p] < ∞

supε supn supti≤s≤ti+1
E[|X ε

s(ti, X̄
ε
ti)|p] < ∞

(44)

for all p ≥ 1.

Then, by using Hölder inequaility,

sup
ε
sup
n

sup
i∈{1,2,···,n}

sup
0≤s≤T

E[|aεi+1(X
ε
s(ti, X̄

ε
ti))|] < ∞. (45)

Similarly,

sup
ε
sup
n

sup
i∈{1,2,···,n}

sup
0≤s≤T

E[|bεi+1(X̄ti+1; X̄
ε
s)|] < ∞. (46)

Thus, we conclude that

E[f(X̄ ε
T )]− E[f(X ε

T (0, x))] =
n−1∑
i=0

∆ε
i (47)

=
n−1∑
i=0

{−
∫ ti+1

ti

∫ t

ti
E[aεi+1(X

ε
s(ti, X̄

ε
ti))]dsdt+

∫ ti+1

ti

∫ t

ti
E[bεi+1(X̄ti+1; X̄

ε
s)]dsdt}

= O

(
1
n

)
.

In other words, we proved (i).

17



5.2 Proof of Theorem 2

We prove only (i), again.

First, we claim that

sup
s,i,n

∣∣∣E [aεi+1(X
ε
s(ti, X̄

ε
ti
))
]
− E

[
a0
i+1(X

0
s (ti, X̄

0
ti
))
]∣∣∣ = O(ε) (ε ↓ 0)

(48)

and that

sup
s,i,n

∣∣∣E [bεi+1(X̄
ε
ti ; X̄

ε
s)
]
−E

[
b0i+1(X̄

0
ti; X̄

0
s )
]∣∣∣ = O(ε) (ε ↓ 0). (49)

we will show only the first one, and the second one can be obtained in the
similar way.

We need to show that

limε↓0
1
ε
sup
n

sup
i∈{1,2,···,n}

sup
0≤s≤T

∣∣∣E [aεi+1(X
ε
s(ti, X̄

ε
ti
))
]
−E

[
a0
i+1(X

0
s (ti, X̄

0
ti
))
]∣∣∣ < ∞.

(50)
Notice that

aεi+1(X
ε
s(ti, X̄

ε
ti)) = a0

i+1(X
0
s (ti, X̄

0
ti)) + ε

∫ 1

0
∂ε|ε=uεa

ε
i+1(X

ε
s(ti, X̄

ε
ti))du.

where

∂ε|ε=uεa
ε
i+1(X

ε
s(ti, X̄

ε
ti)) ≡

∂aεi+1(X
ε
s(ti, X̄

ε
ti
))

∂ε

∣∣∣∣∣
ε=uε

.

Then,

1
ε
sup
s,i,n

∣∣∣E [aεi+1(X
ε
s(ti, X̄

ε
ti))− a0

i+1(X
0
s (ti, X̄

0
ti))
]∣∣∣ = sup

s,i,n

∣∣∣∣E
[∫ 1

0
∂ε|ε=uεa

ε
i+1(X

ε
s(ti, X̄

ε
ti))du

]∣∣∣∣
≤ sup

s,i,n
E
[∫ 1

0

∣∣∣∂ε|ε=uεa
ε
i+1(X

ε
s(ti, X̄

ε
ti))
∣∣∣ du]

≤ sup
s,i,n

sup
0<ε1<ε

∥∥∥∂ε1aε1i+1(X
ε1
s (ti, X̄

ε1
ti
))
∥∥∥
1

where ‖ · ‖1 denotes L1(P )-norm.

Note that ∂ε1a
ε1
i+1(X

ε1
s (ti, X̄

ε1
ti
)), 0 < ε1 < ε is a polynomial function of

∂Xε1
s (ti, X̄

ε1
ti )

∂ε1
,

V
(k1)
0 , ∂k2V

(k1)
0 , ∂k2∂l2V

(k1)
0 , ∂k1∂k2∂l2V

(k1)
0 ,

V (k2)
α , ∂k2V

(k1)
α , ∂k2∂l2V

(k1)
α , ∂k1∂k2∂l2V

(k1)
α ,

uε1i+1, ∂k1u
ε1
i+1, ∂k1∂k2u

ε1
i+1, ∂k1∂k2∂lu

ε1
i+1, and ∂k1∂k2∂l1∂l2∂mu

ε1
i+1
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for k1, k2, l1, l2, m = 1, 2, · · · , D and α = 1, 2, · · · , r, which are evaluated at
x = X ε1

s (ti, X̄
ε1
ti ), 0 < ε1 < ε.

Applying the similar argument in Chapter II-5 of Bichteler etal.(1987) to
the system of the equations;


X̄ ε1
s = x+

∫ s
0 V0(X̄

ε1
η(u), ε1)du +

∫ s
0 V (X̄ ε1

η(u), ε1)dwu, s ∈ [0, T ],

X ε1
s (ti, X̄

ε1
ti ) = X̄ ε1

ti +
∫ s
ti
V0(X ε1

s (ti, X̄
ε1
ti ), ε1)du+

∫ s
ti
V (X ε1

s (ti, X̄
ε1
ti ), ε1)dwu, s ∈ [ti, ti+1),

∂X̄
ε1
s

∂ε1
=
{∫ s

0 ∂ε1V0(X̄ ε1
η(u), ε1)du+

∫ s
0 ∂ε1V (X̄

ε1
η(u), ε1)dwu

}
+
∫ s
0 ∂V0(X̄η(u), ε1)

{
∂X̄

ε1
η(u)

∂ε1

}
du+

∑r
α=1

∫ s
0 ∂Vα(X̄ ε1

η(u), ε1)
{
∂X̄

ε1
η(u)

∂ε1

}
dwα

u ,

∂X
ε1
s (ti,X̄

ε1
ti

)

∂ε1
=

∂X̄
ε1
ti

∂ε1
+
{∫ s

ti
∂ε1V0(X ε1

u (ti, X̄
ε1
ti ))du+

∫ s
ti
∂ε1V (X

ε1
u (ti, X̄

ε1
ti ), ε1)dwu

}
+
∫ s
ti
∂V0(X ε1

u (ti, X̄
ε1
ti ))
{
∂X

ε1
u (ti,X̄

ε1
ti

)

∂ε1

}
du

+
∑r

α=1

∫ s
ti
∂Vα(X ε1

u (ti, X̄
ε1
ti
), ε1)

{
∂X

ε1
u (ti,X̄

ε1
ti

)

∂ε1

}
dwα

u , s ∈ [ti, ti+1),

(51)

where ∂Vα, α = 0, 1, · · · , r denotes the partial derivative with respect to the
first argument, we can also show that


supn sup0≤s≤T sup0<ε1<ε E[|X̄ ε1
s |p] < ∞,

supn supi∈{1,2,···,n} supti≤s≤ti+1
sup0<ε1<ε E[|X̄ ε1

s (ti, X̄
ε1
ti
)|p] < ∞

supn sup0≤s≤T sup0<ε1<ε E
[∣∣∣∂X̄ε1

s
∂ε1

∣∣∣p] < ∞

supn supi∈{1,2,···,n} supti≤s≤ti+1
sup0<ε1<ε E

[∣∣∣∣∂X
ε1
s (ti,X̄

ε1
ti

)

∂ε1

∣∣∣∣
p]

< ∞

(52)

for all p ≥ 1.

Thus, ∂ε|ε=ε1a
ε
i+1(X

ε
s(ti, X̄

ε
ti
)) is Lp -bounded for any p ≥ 1 uniformly in

s, i, n and 0 < ε1 < ε.

We return to prove (i).

Bias[V∗(ε, n, N )] = E[V ∗(ε, n, N )]− V

= {E[f(X̄ ε
T )]− E[f(X ε

T (0, x))]}− {E[f(X̄ [0]
T )]− E[f(X [0]

T (0, x))]}

=
n−1∑
i=0

∫ ti+1

ti

∫ s

ti
{−E[aεi+1(X

ε
s(ti, X̄

ε
ti))] + E[bεi+1(X̄

ε
ti; X̄

ε
s)]}dsdt

−
n−1∑
i=0

∫ ti+1

ti

∫ s

ti
{−E[a0

i+1(X
0
s (ti, X̄

0
ti))] +E[b0i+1(X̄

0
ti; X̄

0
s )]}dsdt

=
n−1∑
i=0

∫ ti+1

ti

∫ s

ti

−{E[aεi+1(X
ε
s(ti, X̄

ε
ti
))]− E[a0

i+1(X
0
s (ti, X̄

0
ti
))]}dsdt

+
n−1∑
i=0

∫ ti+1

ti

∫ s

ti

{E[bεi+1(X̄
ε
ti
; X̄ ε

s)]}]− E[b0i+1(X̄
0
ti
; X̄0

s )]}dsdt
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Hence, using above, we conclude that

E[f(X̄ ε
T )]− E[f(X ε

T (0, x))]− E[f(X̄0
T )] + E[f(X0

T (0, x))] = O

(
ε

n

)
.

6 Proof of Theorems 3

We only prove (i) again. The others are easy. Let A = 1+|x|2− 1
2∆, and then

A−1 is an integral operator. (See Ikeda and Watanabe(1989) or Sakamoto
and Yoshida(1996) for the detail.) Then, under [A2] for a sufficiently large
integer m, we have

E[f(X ε
T (0, x) +

1
n
ŵT )] −E[f(X ε

T (0, x))] = (53)

E[(A−mf)(X ε
T (0, x) +

1
n
ŵT )Ψ

(ε)
1 ]−E[(A−mf)(X ε

T (0, x))Ψ
(ε)
2 ] = O(

1
n
)

for some Wiener functionals Ψ(ε)
1 and Ψ(ε)

2 . The last equality holds because
the differences between (A−mf)(X ε

T (0, x) +
1
nŵT ) and (A−mf)(X ε

T (0, x)) ,
and between Ψ(ε)

1 and Ψ(ε)
2 are O( 1

n).

Under [A2], we can also obtain

{E[f(X ε
T (0, x) +

1
n
ŵT )]− E[f(X ε

T (0, x)]}

−{E[f(X [0]
T (0, x) +

1
n
ŵT )]−E[f(X [0]

T (0, x)]}

= O

(
ε

n

)
. (54)

Then, under [A3],

E[f(X ε
T (0, x) +

1
n
ŵT )] −E[f(X ε

T (0, x))]

=
(
E
[
f(X ε

T (0, x) +
1
n
ŵT )ψ

(
|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|

)]
− E

[
f(X ε

T (0, x))ψ
(
|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|

)])

+
(
E
[
f(X ε

T (0, x) +
1
n
ŵT )

{
1− ψ

(
|σ

X
[0]
T

(0,x)
|/|4σXε

T (0,x)|
)}]

− E
[
f(X ε

T (0, x))
{
1− ψ

(
|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|

)}])
(55)

where ψ(x) is a ψ : R → R smooth function such that

ψ(x) =




1 if |x| ≤ 1
2

0 if |x| ≥ 1

The first parenthesis after the equality in the equation (55) is O( 1
n) as in

the equation (53). For the second parenthesis,

E
[
f(X ε

T (0, x) +
1
n
ŵT )

{
1− ψ

(
|σ

X
[0]
T

(0,x)
|/|4σXε

T (0,x)|
)}]
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−E
[
f(X ε

T (0, x))
{
1− ψ

(
|σ

X
[0]
T

(0,x)
|/|4σXε

T (0,x)|
)}]

≤ C

∥∥∥∥1− ψ

(
|σ

X
[0]
T (0,x)

|/|4σXε
T (0,x)|

)∥∥∥∥
q

(by Hölder inequality)

≤ C × P ({|σ
X

[0]
T (0,x)

|/|σXε
T (0,x)| > 2}) 1

q

≤ C × 2KE




 |σXε

T (0,x) − σ
X

[0]
T (0,x)

|
|σ

X
[0]
T (0,x)

|



K

 (by Markov inequality)

= O(εK) for all K > 0 (56)

for some positive costant C and q > 1 where ‖ · ‖q denotes Lq(Pw ⊗ P ŵ)-
norm.

Hence under [A3], in stead of the equation (53) we have

E[f(X ε
T (0, x) +

1
n
ŵT )]− E[f(X ε

T (0, x))] = O(
1
n
) +O(εK) for all K > 0.

(57)

Similarly, in stead of the equation (54), we have

{E[f(X ε
T (0, x) +

1
n
wT )]− E[f(X ε

T (0, x)]}

−{E[f(X [0]
T (0, x) +

1
n
wT )]−E[f(X [0]

T (0, x)]}
= O(

ε

n
) +O(εK) for all K > 0 (58)

Next, we note that the Bias of V(n,N ) is expressed as

Bias[V(n,N )] = E[V(n,N )]−V

= E
[
f

(
X̄ ε

T +
1
n
ŵT

)]
− E[f(X ε

T (0, x)]

=
{
E
[
f

(
X̄ ε

T +
1
n
ŵT

)]
−E

[
f

(
X ε

T (0, x) +
1
n
ŵT

)]}

+
{
E
[
f

(
X ε

T (0, x) +
1
n
ŵT

)]
−E[f(X ε

T (0, x)]
}
. (59)

Because after the last equality in this equation, the second term is O
(

1
n

)
under [A2], or O( 1

n) + O(εK) for all K > 0 under [A3], if the first term is
O
(

1
n

)
, Bias[V(n,N )] is O

(
1
n

)
under [A2], or O( 1

n) + O(εK) for all K > 0
under [A3].

Similarly, the Bias of V∗(ε, n, N ) is expressed as

Bias[V∗(ε, n, N )] = E[V∗(ε, n, N )]−V

=
{
E
[
f

(
X̄ ε

T +
1
n
ŵT

)]
− E

[
f

(
X̄

[0]
T +

1
n
ŵT

)]}

− {E[f(X ε
T (0, x)]−E[f(X [0]

T (0, x)]}. (60)
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Note that the first term in the equation after the last equality is rewritten
as follows: {

E
[
f

(
X̄ ε

T +
1
n
ŵT

)]
− E

[
f

(
X̄

[0]
T +

1
n
ŵT

)]}
={

E
[
f

(
X̄ ε

T +
1
n
ŵT

)]
− E

[
f

(
X ε

T (0, x) +
1
n
ŵT

)]}

−
{
E
[
f

(
X̄

[0]
T +

1
n
ŵT

)]
−E

[
f

(
X

[0]
T (0, x) +

1
n
ŵT

)]}

+E
[
f

(
X ε

T (0, x) +
1
n
ŵT

)]
−E

[
f

(
X

[0]
T (0, x) +

1
n
ŵT

)]
.

Hence,

Bias[V∗(ε, n, N )] =
[{

E
[
f

(
X̄ ε

T +
1
n
ŵT

)]
− E

[
f

(
X ε

T (0, x) +
1
n
ŵT

)]}

−
{
E
[
f

(
X̄

[0]
T +

1
n
ŵT

)]
− E

[
f

(
X

[0]
T (0, x) +

1
n
ŵT

)]}]

+
[{

E
[
f

(
X ε

T (0, x) +
1
n
ŵT

)]
− E[f(X ε

T (0, x)]
}

−
{
E
[
f

(
X

[0]
T (0, x) +

1
n
ŵT

)]
−E[f(X [0]

T (0, x)]
}]

. (61)

Because the second square bracket in the last equation is O
( ε
n

)
under the

condition [A2], if the first square bracket is O
(
ε
n

)
, Bias[V∗(ε, n, N )] is O

(
ε
n

)
under [A2]. Similarly, because under the condition [A3], the second square
bracket is O

(
ε
n

)
+ O(εK) for all K > 0, if the first square bracket is O

(
ε
n

)
,

Bias[V∗(ε, n, N )] is O
(
ε
n

)
+O(εK) for all K > 0 under [A3].

In the sequel, we will evaluate

E
[
f

(
X̄ ε

T +
1
n
ŵT

)]
− E

[
f

(
X ε

T (0, x) +
1
n
ŵT

)]
(62)

in order to show that Bias[V(n,N )] is O
(

1
n

)
.

First, define

uεi(x) := E
[
f

(
X ε

T (ti, x) +
1
n
ŵT

)]
. (63)

Then, we can write

E[f(X̄ ε
T +

1
n
ŵT )]−E[f(X ε

T (0, x) +
1
n
ŵT )] =

n−1∑
i=0

∆ε
i

where
∆ε

i := E[uεi+1(X̄
ε
ti+1

)]−E[uεi(X̄
ε
ti)] (64)

Then,

E[uεi(X̄
ε
ti)] = E[f(X ε

T (ti, X̄
ε
ti) +

1
n
ŵT )]

= E
[
f

(
X ε

T (ti+1, X
ε
ti+1

(ti, X̄ti)) +
1
n
ŵT

)]
.
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Hence,
E[uεi(X̄

ε
ti)] = E[uεi+1(X

ε
ti+1

(ti, X̄ ε
ti))]. (65)

Then, ∆ε
i is formally expressed in the same manner as in the smooth cases(that

is, f ∈ Ck
↑ (R

D)): aεi+1 and bεi+1 are defined as the equations (42) and (43)
respectively which includes partial derivatives of uεi+1(x) with respect to x.
These derivatives are justified in the sense of Malliavin based on the uniform
non-degeneracies of related Malliavin covariances; for instance, the uniform
non-degeneracy of the Malliavin covariance of X ε

T (ti+1, X
ε
t (ti, X̄

ε
ti
)) + 1

n ŵT ,

t ∈ [ti, ti+1) denoted by σ
(
X ε

T (ti+1, X
ε
t (ti, X̄

ε
ti)) +

1
nŵT

)
. That is,

sup
t,ε,n

E

[∣∣∣∣σ
(
X ε

T (ti+1, X
ε
t (ti, X̄

ε
ti)) +

1
n
ŵT

)∣∣∣∣−p
]
<∞, (66)

and the uniform non-degeneracy of the Malliavin covariance ofX ε
T (ti+1, X̄

ε
t+

1
nŵT ) , t ∈ [ti, ti+1) denoted by σ

(
X ε

T (ti+1, X̄
ε
t ) +

1
nŵT

)
. That is,

sup
t,ε,n

E

[∣∣∣∣σ
(
X ε

T (ti+1, X̄
ε
t ) +

1
n
ŵT

)∣∣∣∣−p
]
< ∞, (67)

Those uniform non-degeneracies are guranteed by the following lemma 1 of
Kohatsu-Higa(1996):

Lemma 1 (Kohatsu-Higa)
Let {Fu

n }n and Fu random variables in D∞ where u is a parameter, D∞ =
∩p>1 ∩s>0 Dp,s, and Dp,s denotes the Sobolev space of Wiener functionals.
(See Ikeda and Watanabe(1989) for the details of the Sobolev space Dp,s.)
Suppose also the followings:
i) there exists γ > 0 such that

sup
u

‖Fu
n − Fu‖1,p = O(

1
nγ

) for all p > 1.

ii)
sup
u

‖|σFu|−1‖p < ∞ for all p > 1.

iii) for all p > 1, there exists ν(p) > 0 such that

sup
u

‖|σFu
n
|−1‖p = O(nν(p)).

Then,
sup
n
sup
u

‖|σFu
n
|−1‖p < ∞ for all p > 1.

Consequently, following the same procedure as in the smooth cases, we can
obtain that

E
[
f

(
X̄ ε

T +
1
n
ŵT

)]
−E

[
f

(
X ε

T (0, x) +
1
n
ŵT

)]
= O

(
1
n

)
. (68)
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Therefore,

Bias[V(n,N )] = O

(
1
n

)
. (69)

In the similar manner, we can show that[{
E
[
f

(
X̄ ε

T +
1
n
ŵT

)]
− E

[
f

(
X ε

T (0, x) +
1
n
ŵT

)]}
(70)

−
{
E
[
f

(
X̄

[0]
T +

1
n
ŵT

)]
−E

[
f

(
X

[0]
T (0, x) +

1
n
ŵT

)]}]
= O

(
ε

n

)
.

Then, we have

Bias[V∗(ε, n, N )] = O

(
ε

n

)
under [A2] (71)

Bias[V∗(ε, n, N )] = O

(
ε

n

)
+O(εK) for all K > 0 under [A3].

(72)

7 Appendix: On the Validity of Square-root Pro-

cesses in the Asymptotic Method

Let processes {X ε
t ; 0 ≤ t ≤ T} and {X̃ ε

t ; 0 ≤ t ≤ T} defined as follows:


dX ε
t = (cX ε

t + d)dt+ ε
√
X ε

tdwt, X
ε
0 = x0

dX̃ ε
t = (cX̃ ε

t + d)dt+ εg(X̃ ε
t )dwt, X̃

ε
0 = x0

(73)

where T < ∞, c, d are some constants with d ≥ 0, x0 > 0, and ε ∈ (0, 1].
g(x) is a smooth modification of

√
x such that g(x) =

√
x for x ≥ a

′
where

a
′
< a, and a ≡ 1

2 mint∈[0,T ]X
0
t . The process X

ε
t is a so called square-root

process, and the process X̃ ε
t is a modified process of X

ε
t . Suppose that for a

R-valued functional F , F (X ε) and F (X̃ ε) are L2(P )-finite. Then, we have

E[|F (X ε)− F (X̃ ε)|1{Xε �=X̃ε}] ≤ (‖F (X ε)‖2 + ‖F (X̃ ε)‖2)P ({X ε �= X̃ ε}) 1
2

where ‖ · ‖2 denotes the L2(P )-norm. It also holds that

P ({X ε �= X̃ ε}) = P ({X ε
t ≤ a

′
for some t ∈ [0, T ]})

≤ P ({ sup
0≤t≤T

|X ε
t −X0

t | > a})

+P ({X ε
t ≤ a

′
for some t ∈ [0, T ]} ∩ { sup

0≤t≤T
|X ε

t −X0
t | ≤ a}).

We can easily see that the second term after the last inequality is 0. The
first term is smaller than any εn for n = 1, 2, · · · by the following lemma of
a large deviation inequality:

Lemma 2 Suppose that Zε
t , t ∈ [0, T ] follows a SDE:

dZε
t = µ(Zε

t )dt+ εσ(Zε
t )dwt.
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where µ(z) satisifies Lipschitz and linear growth conditions, and σ(z) satisi-
fies the linear growth condtion. We assume that the unique strong solution
exists. Then, there exists positive constants a1 and a2 independent of ε such
that

P ({ sup
0≤s≤T

|Zε
s − Z0

s | > a}) ≤ a1 exp(−a2ε
−2) (74)

for all a > 0.

The lemma can be proved by slight modification of lemma5.3 in Yoshida(1992),
or lemma 7.1 in Kunitomo and Takahashi(2003). Note also that X ε and X̃ ε

satisfy the condtions in lemma 2. Hence, if ‖F (X ε)‖2 < ∞ and ‖F (X̃ ε)‖2 <
∞, then

E[|F (X ε)− F (X̃ ε)|] = o(εn), n = 1, 2, · · · . (75)

Therefore, the difference between F (X ε) and F (X̃ ε) is negligible in the small
disturbance asymptotic theory. Finally, we remark that functionals corre-
sponding to F in the examples of section 4 are L2(P ) bounded, because
F (x) = γ(x) is bounded in example 1, and for F (x) = ( 1

T

∫ T
0 xtdt − K)+

with K > 0 in example 2,

‖F (X ε)‖2 ≤ ‖ 1
T

∫ T

0
X ε

t dt‖2 ≤ 1
T

∫ T

0
‖X ε

t‖2dt < ∞

and

‖F (X̃ ε)‖2 ≤ ‖ 1
T

∫ T

0
X̃ ε

t dt‖2 ≤ 1
T

∫ T

0
‖X̃ ε

t‖2dt < ∞.
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