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infinitely divisible distributions. The empirical likelihood method gives an easy

way to estimate the parameters of the infinitely divisible distributions including the

stable distributions. The maximum empirical likelihood estimator by using the em-

pirical characteristic functions gives the consistency, the asymptotic normality, and

the asymptotic efficiency when the number of restrictions is large. Test procedures

and some extensions to the regression and estimating equations problems with the

infinitely divisible disturbances are developed. A simple empirical example on the

analysis of stock index returns in Japan is discussed.

Key Words

Lévy process, Infinitely Divisible Distribution, Stable Distribution, Empirical Like-

lihood, Empirical Characteristic Function, Regression and Estimating Equation.

∗This paper is a revised version of Discussion Paper CIRJE-F-272 (May 2004), Graduate School
of Economics, University of Tokyo, which was presented at European Econometric Society Meeting
at Vienna (August 2006) and Institute of Statistical Mathematics at Tokyo (September 2006). We
thank Professor Y. Miyahara of Nagoya-City University for helpful comments in particular.

†Professor, Graduate School of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo
113-0033, JAPAN (E-mail: kunitomo@e.u-tokyo.ac.jp).

‡Graduate Student, Graduate School of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-
ku, Tokyo 113-0033, JAPAN.

1



1. Introduction

There have been growing interests on the applications of the Lévy processes and

the class of infinitely divisible distributions in several research fields including finan-

cial economics. One interesting class of infinitely divisible distributions is the class

of stable distributions. Since they are important classes of probability distributions,

there have been extensive studies by mathematicians over several decades. See Feller

(1971), Zolotarev (1986), and Sato (1999) for the details of related problems in the

probability literature. Several statistical applications of stable distributions have

been applied for modeling the fat-tail phenomena sometimes observed in financial

economics and other applied areas of statistics. See Mandelbrot (1963), Paulson et.

al. (1975), and Nolan (2001) for the earlier studies of the subject in the statistics

literature. More recently, some applications of the more general Lévy processes and

other classes of infinitely divisible distributions have been used in the analyses of

financial data. See Bandorff-Nielsen et. al. (2001) and Carr et. al. (2002) for recent

examples.

Several estimation methods for the key parameters of stable distributions have

been proposed and developed over the past few decades. DuMouchel (1971) has in-

vestigated the parametric maximum likelihood estimation method and Nolan (1997)

has extended a numerical algorithm of the likelihood evaluation. Since it is not pos-

sible to obtain any explicit form of the likelihood function for stable distributions

except very special cases, Fama and Roll (1968, 1971) proposed a practical estima-

tion method based on the percentiles of distributions and later MuCulloch (1986)

has improved their method. Also another method based on the empirical character-

istic function was originally proposed by Press (1972), and there have been several

related studies by Paulson et. al. (1975), Koutrouvelis (1980), Kogon and Williams

(1998), Feuerverger and McDunnough (1981a, 1981b). These classical estimation

methods could be extended to the more general Lévy processes.

The main purpose of this paper is to develop a new parameter estimation pro-

cedure for the Lévy processes and some classes of infinitely divisible distributions

based on the empirical likelihood approach. The empirical likelihood method was

originally proposed by Owen (1988, 1990) for constructing nonparametric confidence

intervals and later it has been extended to the estimating equations problem by Qin

and Lawless (1994). In this paper first we shall show that we can apply the em-
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pirical likelihood approach to the estimation problem of unknown parameters for

stable distributions and the resulting computational burden is not very heavy. In

particular, the maximum empirical likelihood (MEL) estimator for the parameters

of stable distribution has some desirable asymptotic properties; it has the consis-

tency, the asymptotic normality, and the asymptotic efficiency when the number of

restrictions on the empirical characteristic function is large under a set of regularity

conditions. Also it is possible to develop the empirical likelihood ratio statistics for

the parameters of stable distributions which have the desirable asymptotic property.

More importantly, it is rather straightforward to extend our estimation method

for the unknown parameters of stable distributions to the more general estimation

problem of Lévy processes and infinitely divisible distributions. Also we can apply

our method to the regression and the general estimating equation problems with

stable disturbances and other infinitely divisible disturbances. We shall show that

it is possible to estimate both the parameters of equations and the parameters of

stable distributions (or some infinitely divisible distributions) for disturbances at

the same time by our method. It seems that it is not easy to solve this estimation

problem by the conventional methods proposed in the past studies and in this sense

our estimation method has some advantage over other methods. For the estimating

equations problem, Qin and Lawless (1994) have shown some asymptotic properties

of the MEL estimator and Kitamura et. al. (2001) have extended their results to

one direction. In this respect our study has some technical novelty because we are

considering the case when the number of restrictions grows with the sample size.

Hence this paper can be regarded as an extension of Qin and Lawless (1994) in an

important direction.

In Section 2, we formulate the empirical likelihood estimation method of the

class of stable distributions in the standard situation and state our main results on

the asymptotic properties of the MEL estimator and the related testing procedure.

Then in Section 3, we discuss the estimation problem of the Lévy processes and

several infinitely divisible distributions, and an extension to the estimating equations

problem when the disturbance terms follow the stable distribution (or some infinitely

divisible distributions). In Section 4, we report some simulation results and in

Section 5 we give an empirical analysis of the stock index returns in Japan by the

use of CGMY process. We give some concluding remarks in Section 6 and the proofs

of main results are given in Section 7.
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2. Empirical Likelihood Estimation of Stable Distribution

We first consider the situation when Xi (i = 1, . . . , n) are a sequence of inde-

pendently and identically distributed random variables and they follow the class of

stable distributions. Let the characteristic function of Xi be denoted by φθ(t), and

its real part and imaginary part be φR
θ (t) and φI

θ(t), respectively. We adopt the

formulation of the characteristic function by Chamber et. al. (1976) for the class of

stable distribution and it is represented as

φθ(t) = φR
θ (t) + iφI

θ(t) , (2.1)

where
φR

θ (t) = e−|γt|α cos[δt + βγt(|γt|α−1 − 1) tan πα
2

] ,

φI
θ(t) = e−|γt|α sin[δt + βγt(|γt|α−1 − 1) tan πα

2
] ,

and the parameter space is given by

Θ = {0 < α ≤ 2 ,−1 ≤ β ≤ 1 , γ > 0 , δ ∈ R} .

In the following analysis we denote the vector of unknown parameters θ = (α, β, γ, δ)
′

and the stable distribution associated with θ as Hθ .

There are two non-standard problems in the estimation of the vector of unknown

parameters θ. It has been well-known in probability theory that except some special

cases (the normal distribution, the Cauchy distribution, and a Lévy distribution)

we do not have a simple explicit form of the probability density function and dis-

tribution function. This makes some difficulty in the direct estimation of unknown

parameters including the parametric maximum likelihood method. Also since the

stable distributions do not necessarily have the first and/or second moments, some

of standard techniques in the asymptotic theory cannot be directly applicable.

2.1 Empirical Likelihood Method

In order to estimate the unknown parameters of the stable distributions, we are

proposing to use the empirical likelihood approach, which is similar to the one

developed by Qin and Lawless (1994). Although the stable distributions do not

necessarily have the first and second moments, we can utilize the information from

the empirical characteristic function. We define the empirical likelihood function by

Ln(Hθ) =
n∏

k=1

(Hθ(Xk) − Hθ(Xk−)) =
n∏

k=1

pk ,
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where pk (k = 1, · · · , n) are the probability assigned to the data points of Xk.

Without any further restriction except pk ≥ 0 and
∑n

k=1 pk = 1, the empirical

likelihood function Ln(Hθ) can be maximized at pk = 1/n (k = 1, · · · , n). Hence

the empirical likelihood ratio function is given by Rn(Hθ) =
∏n

k=1 npk. Then we

define the maximum empirical likelihood estimator θ̂n for the vector of unknown

coefficients by maximizing Rn(Hθ) under the restrictions :

Pn =

{
pk ≥ 0,

n∑
k=1

pk = 1,
n∑

k=1

pk

(
cos(tlXk) − φR

θ (tl)
)

= 0,

n∑
k=1

pk

(
sin(tlXk) − φI

θ(tl)
)

= 0 (k = 1, · · · , n; l = 1, . . . , m)

}
.

(2.2)

In the above restrictions m is the number of restrictions on the characteristic function

(we take m ≥ 2), and two terms
∑n

k=1 pk cos(tlXk) and
∑n

k=1 pk sin(tlXk) are the real

part and the imaginary part of the empirical characteristic function evaluated at m

different points t = tl (t1 < t2 < · · · < tm; l = 1, · · · , m). The choice of m is

important and it can be dependent on the sample size n, but we shall discuss this

problem later.

Define 2m × 1 vectors

g(Xk, θ) =
(
gR(Xk, θ)

′
, gI(Xk, θ)

′)′
, (2.3)

where gR(Xk, θ) =
(
cos(t1Xk) − φR

θ (t1), . . . , cos(tmXk) − φR
θ (tm)

)′
, gI(Xk, θ) =(

sin(t1Xk) − φI
θ(t1), . . . , sin(tmXk) − φI

θ(tm)
)′

, φR
θ (tk) and φI

θ(tk) are given by (2.1)

evaluated at t = tk (k = 1, · · · , m). Then we have the orthogonality condition

Eθ0 [g(X,θ0)] = 0, where Eθ0 [ · ] is the expectation operator and θ0 is the vector of

true parameter values.

We assume that the convex hull Pn(θ) = {∑n
k=1 pkg(Xk, θ) | pk ≥ 0,

∑n
k=1 pk = 1}

contains 0 and use the Lagrange form as

Ln(θ) =
n∑

k=1

log(npk) − μ

(
n∑

k=1

pk − 1

)
− nλ

′ n∑
k=1

pk g(Xk, θ) , (2.4)

where μ and λ = (λ11, . . . , λ1m, λ21, . . . , λ2m)′ are the 2m × 1 vector of Lagrange

multipliers.

By differentiating Ln(θ) with respect to pk, we have pk = 1/[μ + nλ
′
g(Xk, θ)] (k =

1, · · · , n). Then we have μ̂ = n, p̂k = (1/n)[1+λ
′
g(Xk, θ)]−1, and λ = λ(θ) is the so-

lution of 0 =
∑n

k=1 p̂kg(Xk, θ). When a 2m×2m matrix (1/n)
∑n

k=1 g(Xk, θ)g(Xk, θ)
′
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is positive definite and p̂k > 0 (k = 1, · · · , n), the matrix

∂2

∂λ∂λ
′

(
−1

n

n∑
k=1

log[1 + λ
′
g(Xk, θ)]

)
=

1

n

n∑
k=1

g(Xk, θ)g(Xk, θ)
′[

1 + λ
′
g(Xk, θ)

]2
is also positive definite and λ = λ(θ) is the unique solution of

argminλ

{
−1

n

n∑
k=1

log
[
1 + λ

′
g(Xk, θ)

]}
.

We define the maximum empirical likelihood (MEL) estimator for the vector of

unknown parameters θ by maximizing the log-likelihood function ln(θ) which is

given by

ln(θ) = log
n∏

k=1

np̂k = −
n∑

k=1

log
[
1 + λ

′
g(Xk, θ)

]
. (2.5)

The numerical maximization in the MEL estimation is usually done by the two-step

optimization procedure proposed by Owen. (See Owen (2001) for the details.)

2.2 Asymptotic Properties of MEL estimation

We shall investigate the asymptotic properties of the MEL estimator for θ. For the

problem of the general estimating equations, Qin and Lawless (1994) have proven

the consistency and the asymptotic normality of the MEL estimator under a set of

regularity conditions. When the number of restrictions m is fixed, we have an analo-

gous result in our situation, which is the starting point of subsequent developments.

Theorem 2.1 : We assume that X1, . . . , Xn are a sequence of i.i.d. random

variables with the stable distribution Hθ and the vector of true parameters θ0 =

(α0, β0, γ0, δ0)
′
is in Int(Θ1), where Θ1 = {(α, β, γ, δ) : ε ≤ α ≤ 1 − ε, 1 + ε ≤ α ≤

2− ε, −1 ≤ β ≤ 1, ε ≤ γ ≤ M, −M ≤ δ ≤ M} with ε (a sufficiently small positive

number) and M (a sufficiently large positive number). Let the MEL estimator be

θ̂n = argmaxθRn(θ) , where

Rn(θ) =

{
n∏

k=1

npk |
n∑

k=1

pkg(Xk, θ) = 0, pk ≥ 0,
n∑

k=1

pk = 1

}
, (2.6)

and a 2m × 1 vector of restrictions g(·, ·) is defined by (2.3). Let the Lagrange

multiplier λ̂n be the solution of

1

n

n∑
k=1

g(Xk, θ̂n)

1 + λ
′
g(Xk, θ̂n)

= 0 . (2.7)
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Then as n → +∞
√

n

⎡⎣ θ̂n − θ0

λ̂n

⎤⎦ d−→ N4+2m

⎡⎣⎛⎝ 0

0

⎞⎠ ,

⎛⎝ Ωm O

O Γm

⎞⎠⎤⎦ , (2.8)

where

Ωm = [B
′
m(θ0)Am(θ0)

−1Bm(θ0)]
−1,

Γm = Am(θ0)
−1[Am(θ0) −Bm(θ0)ΩmBm(θ0)

′
]Am(θ0)

−1,

and we define a 2m × 1 vector Φθ =
(
φR

θ (t1), . . . , φ
R
θ (tm), φI

θ(t1), . . . , φ
I
θ(tm)

)′
, a

2m×4 matrix Bm(θ) =
(

∂Φθ

∂θ
′

)
, a 2m×2m matrix Am(θ) = Eθ

[
g(X1, θ)g(X1, θ)

′]
,

and the (i,j)-th elements of Am(θ) are given by

1
2

{
φR

θ (ti + tj) + φR
θ (ti − tj)

}
− φR

θ (ti)φ
R
θ (tj) (1 ≤ i, j ≤ m),

1
2

{
φI

θ(ti + tj−m) − φI
θ(ti − tj−m)

}
− φR

θ (ti)φ
I
θ(tj−m) (1 ≤ i ≤ m, m + 1 ≤ j ≤ 2m),

1
2

{
φI

θ(ti−m + tj) + φI
θ(ti−m − tj)

}
− φI

θ(ti−m)φR
θ (tj) (m + 1 ≤ i ≤ 2m, 1 ≤ j ≤ m),

−1
2

{
φR

θ (ti−m + tj−m) − φR
θ (ti−m − tj−m)

}
− φI

θ(ti−m)φI
θ(tj−m) (m + 1 ≤ i, j ≤ 2m),

respectively.

The above statement is based on Qin and Lawless (1994) (their Lemma 1 and

Theorem 1) and its proof is to check their sufficient conditions in our situation.

We need some regularity conditions on the functions g(x, θ) with respect to θ and

use a neighborhood N(θ0) of θ0 with some smoothness conditions. But it is rather

straightforward to verify those conditions in our situation. For instance, we can

utilize the condition that for ∀θ ∈ N(θ0) (a compact set) we have

‖g(x, θ)‖ =

[
m∑

l=1

(
cos(tl x) − φR

θ (tl)
)2

+
m∑

l=1

(
sin(tl x) − φI

θ(tl)
)2
]1/2

≤ 2
√

2m .

Also it is possible to show directly that ∂g(x, θ)/∂θj and ∂2g(x, θ)/∂θj∂θk are con-

tinuous in N(θ0), and both ∂g(x, θ)/∂θj and ∂2g(x, θ)/∂θj∂θk (i, j = 1, · · · , 4) are

bounded in N(θ0) (N(θ0) ⊂ Θ1).

Next we consider the density function of stable distribution fθ(x) with the vec-

tor of unknown parameters θ = (α, β, γ, δ)
′
. By using the similar arguments as

DuMouchel (1973), we can show that fθ(x) has the following properties :

(i) For x ∈ R, fθ(x) as a function of θ is continuous in Int(Θ1) and for any

7



θ ∈ Int(Θ1) it is twice continuously differentiable.

(ii) Since for any θ ∈ Int(Θ1),

∂2

∂θ∂θ
′

∫ ∞

−∞
fθ(x)dx =

∫ ∞

−∞
∂2fθ(x)

∂θ∂θ
′ dx , (2.9)

then Eθ

[
∂ log fθ(X)

∂θ

]
= 0 and

I(θ) = Eθ

[(
∂ log fθ(X)

∂θ

)(
∂ log fθ(X)

∂θ

)′]
= −Eθ

[
∂2 log fθ(X)

∂θ∂θ
′

]
. (2.10)

(iii) For any θ ∈ Int(Θ1), the Fisher Information matrix I(θ) is non-singular. Hence

for any non-zero vector u ∈ R4 we have the inequality

u′I(θ0)
−1u ≤ u′Ωmu , (2.11)

which implies that Ωm is positive definite.

The last inequality (2.11) implies that the asymptotic variance of the MEL esti-

mator in Theorem 2.1 is larger than the Cramér-Rao lower-bound in general and it

is asymptotically inefficient when the number of restrictions m is fixed. However, it

is possible to consider the situation when m is dependent on the sample size n. For

the estimation problem, we take some η (0 < η < 1) and m = mn = [nη], where [c] is

the largest integer not exceeding c. In order to impose mn restrictions in the form of

(2.2), we set tl = Kl/mn (l = 1, 2, · · · , mn) with some large constant K (> 0). Then

we have the consistency, the asymptotic normality, and the asymptotic efficiency of

the MEL estimator as stated in the next theorem. The proof is lengthy and given

in Section 7.

Theorem 2.2 : We assume that X1, . . . , Xn are i.i.d. random variables with the

stable distribution Hθ. We set m = mn = [n1/2−ε] (0 < ε < 1/2) and define

θ̂n = argmaxθRn(θ), where Rn(θ) is given by (2.6).

(i) Assume that the true parameter vector θ0 is in Int(Θ2) and Θ2 = {(α, β, γ, δ) :

ε ≤ α ≤ 2, −1 ≤ β ≤ 1, ε ≤ γ ≤ M, −M ≤ δ ≤ M} with ε (a sufficiently small

positive number) and M (a sufficiently large positive number). Then as n −→ ∞
θ̂n

p−→ θ0 . (2.13)

(ii) We restrict the parameter space such that the vector of true parameter values

θ0 is in Int(Θ1) and Θ1 is the same as in Theorem 2.1. Then as n −→ ∞
√

n(θ̂n − θ0)
d−→ N4[0,JK(θ0)] , (2.14)
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and

lim
K→+∞

JK(θ0) = I(θ0)
−1,

where JK(θ0) = limm→∞ Ωm(θ0) and Ωm = [B
′
m(θ0)Am(θ0)

−1Bm(θ0)]
−1 evaluated

at the points tl = Kl/mn (l = 1, · · · , mn) and I(θ0) is positive definite.

There are two important special cases to be mentioned. First, when α = 1 (i.e.

the Cauchy distribution) and β �= 0, we have the situation that for any finite t,

lim
α→1

∣∣∣∣∣∂
2φθ(t)

∂α2

∣∣∣∣∣→ +∞ (2.15)

and the convergence rate of α̂n (the estimator of α) to 1 could be different from
√

n.

When α = 2 and β �= 0, we have the situation that for any finite t

lim
α→2

∂φθ(t)

∂β
= lim

α→2

∂2φθ(t)

∂β2
= 0 . (2.16)

Then the vector of unknown parameters θ is unidentified and the limiting informa-

tion matrix is degenerate. (See Matsui and Takemura (2004), for instance.) It is

not still clear if we have the asymptotic normality and the asymptotic efficiency of

the MEL estimator in these boundary cases.

2.3 Empirical Likelihood Testing

It is also possible to develop the empirical likelihood ratio statistics and testing pro-

cedures for the parameters of stable distribution which have the desirable asymptotic

properties as stated in the next theorem. The proof is given in Section 7.

Theorem 2.3 : Suppose the assumptions in (ii) of Theorem 2.2 hold and we set

m = mn = [n1/2−ε] (0 < ε < 1/2).

(i) The empirical likelihood ratio statistic for testing the hypothesis H0 : θ = θ0 is

given by W1 = 2[ln(θ̂n)− ln(θ0)], where the log-likelihood function ln(θ) is given by

(2.5). Then

W1
d−→ χ2(4) (2.17)

as n −→ +∞ when H0 is true.

(ii) For the hypothesis of the restrictions Eθ0[g(X,θ0)] = 0, the likelihood ratio

statistic is given by W2 = −2ln(θ̂n). Then

W2 − 2m√
4m

d−→ N(0, 1) (2.18)
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as n → +∞ when the 2m restrictions imposed are true.

The first part of Theorem 2.3 allows us to use the empirical likelihood ratio

statistic for testing the standard hypothesis H0 as well as constructing confidence

sets for parameters of θ. The second part may not be standard in the statistics lit-

erature, but it corresponds to the testing problem of the overidentifying restrictions

in the econometric literature. Since the degrees of freedom L = 2m−4 in the second

case becomes large as n → +∞, we have the normal distribution as the limit.

3. Estimation of Lévy Processes, Regression and Estimating
Equation Problems

3.1 Estimation of Lévy Processes

It is straightforward to apply our approach explained in Section 2 to several problems

which have some difficulty in the standard procedures. For instance, we consider

the estimation problem of unknown parameters in the class of Lévy processes. For

any one-dimensional Lévy process Zv at a positive finite time v (> 0), it can be

represented as the sum of i.i.d. random variables Xvi with 0 = v0 ≤ v1 ≤ · · · ≤
vn ≤ v . For the notational convenience we take vi − vi−1 = 1 (i = 1, · · · , n = v; v0 =

0, · · · , vn = n) and write Zn =
∑n

i=1 Xi . Then it has been well-known that the

one-dimensional Lévy processes {Zv} and the infinitely divisible distributions for

the random variables {Xi} are completely determined by the characteristic function

φθ(t) = exp
{
ibt − a

2
t2 +

∫
R

[eitx − 1 − itxI(|x| < 1)]νc(dx)
}

, (3.1)

where b and a (≥ 0) are real constants, I(·) is the indicator function, and νc(·) is

the Lévy measure satisfying νc({0}) = 0 ,∫
|x|>0

[|x|2 ∧ 1]νc(dx) < +∞ (3.2)

and we denote c is the vector of some parameters. (See Sato (1999) for the details

of the Lévy processes and the infinitely divisible distributions.) Then the vector of

unknown parameters of the infinitely divisible distributions is represented as θ =

(a, b, c
′
)
′
.
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For possible applications, we mention only three important cases of the infinitely

divisible distributions used in the recent financial economics and mathematical fi-

nance. First, the class of stable distributions with the condition 0 < α < 2 can be

characterized by the Lévy measure

νc(dx) =

⎧⎪⎨⎪⎩
c1

|x|1+α dx for x < 0

c2
|x|1+α dx for x > 0

, (3.3)

where c = (c1, c2, α)
′
. We should note that the parameterization of c1 (> 0) and

c2 (> 0) is different from the one appeared in Section 2, however, there is one-to-

one correspondence between the vectors (α, β, γ, δ) in Section 2 and (α, b, c1, c2) (see

Chapter 2 of Sato (1999) for the details).

The second case is the CGMY process introduced by Carr et. al. (2002), which

has been applied to describe the stochastic processes for financial prices. The Lévy

measure for this process has been given by

νc(dx) = C0{I(x < 0)e−G|x| + I(x > 0)e−M |x|}|x|−(1+Y )dx , (3.4)

where the vector of parameters c = (C0, G,M, Y )
′

satisfies the restrictions C0 >

0, G ≥ 0,M ≥ 0, and Y < 2. The characteristic function is given by

φθ(t) = exp{i[b + C0Γ(−Y )Y (MY −1 − GY −1)]t

+C0Γ(−Y )((M − it)Y − MY + (G + it)Y − GY )]} ,
(3.5)

where the vector of parameters is given by θ = (b, C0, G,M, Y )
′

and Γ(·) is the

Gamma function.

When Y = 0, then the CGMY process is reduced to the Variance Gamma process

proposed by Madan and Seneta (1990). Miyahara (2002) has summarized the basic

properties of the CGMY process and the Variance Gamma process in a systematic

way. Although the characteristic function given by (3.5) is continuous with respect

to θ, we see that for any finite t ∣∣∣∣∣∂φθ(t)

∂Y

∣∣∣∣∣→ +∞

as Y → 0 or Y → 1 . Hence we should be careful to treat the boundary cases as we

have discussed for the class of stable distributions in Section 2.

Third example is the class of normal inverse Gaussian processes, which has been

introduced and discussed by Bandorff-Nielsen (1998). The characteristic function
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for this class of distributions is given by

φθ(t) = exp{δ[
√

α2 − β2 −
√

α2 − (β + it)2] + iμt} , (3.6)

and the vector of parameters is given by θ = (μ, α, β, δ)
′
in the present case.

In these infinitely divisible distributions it is not possible to obtain the simple

form of the density function and the parametric maximum likelihood estimation

method has computational problems except very special cases. In this respect, the

maximum empirical likelihood (MEL) method can be directly applicable and we

can establish the next result. The proof is similar to that of Theorem 2.2 and it is

omitted.

Theorem 3.1 : We assume that X1, . . . , Xn are a sequence of i.i.d. random vari-

ables with the characteristic function given by (3.1), which is continuous with respect

to θ, and the Lévy measure νc is absolutely continuous with respect to the Lebesgue

measure. The true parameter vector θ0 is in Int(Θ3), and Θ3 is a compact subset

such that (3.1) is the characteristic function of the infinitely divisible distribution

with a non-degenerate density fθ(·) everywhere positive in R. We impose 2m × 1

restriction functions as g(Xk, θ) defined as (2.3) at tl = Kl/mn (l = 1, · · · , mn) with

some positive constant K for the real part φR
θ (t) and the imaginary part φI

θ(t) of

φθ(t). We set m = mn = [n1/2−ε] (0 < ε < 1/2).

(i) Define θ̂n = argmaxθRn(θ) and Rn(θ) is given by (2.6). Then

θ̂n
p−→ θ0 . (3.7)

(ii) We restrict the parameter space such that the true parameter value θ0 is in

Int(Θ4) and Θ4 is a compact subset such that I(θ0) (the Fisher information matrix)

is positive definite, and φθ(t) is continuously twice-differentiable with respect to

θ and their partial (first and second) derivatives are bounded by the integrable

functions. Then √
n(θ̂n − θ0)

d−→ N [0,JK(θ0)] , (3.8)

where limK→+∞ JK(θ0) = I(θ0)
−1 and JK(θ0) are defined by the corresponding

quantities as in Theorem 2.2.

There could be simpler regularity conditions for the results in Theorem 3.1. Since

the Lévy measure is not necessarily a finite measure in the general case, however, a

careful analysis would be needed to impose further conditions on νc(·) .
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3.2 Regression and Estimating Equation Problems

We turn to the estimation problems of the nonlinear regression and a single struc-

tural equation in the econometric model (or the estimating equation model in statis-

tics) represented by

y1j = h1(y2j, z1j , θ1) + uj (j = 1, · · · , n) , (3.9)

where h1(·, ·, ·) is a measurable function, y1j and y2j are 1×1 and G1 ×1 (vector of)

endogenous variables, z1j is a K1 × 1 vector of included exogenous variables, θ1 =

(θ1k) is an r× 1 vector of unknown parameters, and {uj} are mutually independent

disturbance terms with the infinitely divisible distribution Hθ2 and θ2 = (θ2k) is the

vector of unknown parameters.

When there does not exists any endogenous variable (i.e. y2j) in the right-

hand side of (3.9), we have the nonlinear regression model. When (3.9) is the first

equation in a system of (1+G1) structural equations which relate the vector of 1+G1

endogenous variables y
′
j = (y1j,y

′
2j) to the vector of K (= K1+K2) instrumental (or

exogenous) variables zj (j = 1, · · · , n). The set of instrumental variables includes

the vector of explanatory variables z1j appeared in the structural equation of our

interest as (3.9). The restrictions we impose on the real part and the imaginary

part of the characteristic function are given such that for any m different points

t1 < · · · < tm,

E
[
h2(zj)(e

ituj − φθ2(t))
]

= 0 (j = 1, · · · , n) , (3.10)

where h2(·) is a set of l functions of instrumental variables zj (l ≤ K) and θ2 =

(a, b, c
′
)
′
is the vector of unknown parameters of the infinitely divisible distributions

for the disturbance terms {uj}. Because we do not specify the structural equations

except (3.9) and we only have the limited information on the set of instrumental

variables (or instruments), we are actually considering the limited information es-

timation method in econometrics. (See Anderson (2003) and Anderson and Rubin

(1949) on the classical linear formulation of the related problems and see Anderson

et. al. (2005) for the finite sample properties of the MEL estimator in the simple

linear structural equation.)

As an important application of our general procedure, we shall consider the

nonlinear regression and the estimating equation problems when the disturbance

terms follow the class of infinitely divisible distributions. Let θ = (θ
′
1, θ

′
2)

′
and

θ2 = (α, β, γ, δ)
′
be the vectors of unknown parameters in the estimating equations
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with the infinitely divisible disturbances. The maximum empirical likelihood (MEL)

estimator for the vector of unknown parameters can be defined by maximizing the

Lagrange form

L∗
n(λ, θ) =

n∑
j=1

log(n pj) − μ

⎛⎝ n∑
j=1

pj − 1

⎞⎠ − n
n∑

j=1

pjh
′
2(zj)

×
{

m∑
k=1

λ1k[cos(tk(y1j − h1(y2j, z1j , θ1))) − φR
θ2

(tk)]

+
m∑

k=1

λ2k[sin(tk(y1j − h1(y2j , z1j, θ1))) − φI
θ2

(tk)]

}
,

(3.11)

where μ is a scalar Lagrange multiplier, and λ1k and λ2k (k = 1, · · · , m) are l × 1

vectors of Lagrange multipliers, φR
θ2

(t) and φI
θ2

(t) are the real part and the imagi-

nary part of φθ2(t), respectively, and pj (j = 1, · · · , n) are the weighted probability

functions to be chosen. The above maximization problem is the same as to maximize

Ln(λ, θ) = −
n∑

j=1

log

(
1 + h

′
2(zj)

{
m∑

k=1

λ1k[cos(tk(y1j − h1(y2j , z1j, θ1))) − φR
θ2

(tk)]

+
m∑

k=1

λ2k[sin(tk(y1j − h1(y2j , z1j, θ1)))− φI
θ2

(tk)]

})
,

(3.12)

where we have used the relations μ̂ = n and

[np̂j ]
−1 = 1 + h

′
2(zj)

{
m∑

k=1

λ1k[cos(tk(y1j − h1(y2j , z1j , θ1))) − φR
θ2

(tk)]

+
m∑

k=1

λ2k[sin(tk(y1j − h1(y2j , z1j, θ1))) − φI
θ2

(tk)]

}
.

(3.13)

By differentiating (3.12) with respect to λ
′
= (λ

′
11, λ

′
21, · · · , λ

′
1m, λ

′
2m) and combin-

ing the resulting equation with (3.13), we have the MEL estimator for the vector of

parameters θ. Because we have r + 4 parameters and the number of restrictions is

2lm, the degrees of overidentifying restrictions is given by

L = 2lm − r − 4 , (3.14)

where we assume that L > 0 .

In our formulation of the present problem the restrictions of (2.2) in Section 2

can be interpreted as the simplest case of (3.10) in this section when r = 0, l = 1,
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and h2(x) = 1. Also if we set yj = y1j , xj = z1j (j = 1, · · · , n), and the vector of

xj are exogenous, then we have the nonlinear regression model with the infinitely

divisible disturbances or the stable disturbances.

More generally, the estimation problem of structural equations has been dis-

cussed under the standard moment conditions on disturbance terms and the gen-

eralized method of moments by Hansen (1982) or the estimating equation method

by Godambe (1960). The semi-parametric statistical estimation methods have been

ususally applied. (See Hayashi (2000), for the details of standard results in the

recent econometrics literature.) By applying the similar arguments as in Section

2, it may be possible to establish the asymptotic results as Theorem 2.2, Theorem

2.3 and Theorem 3.1 in the general estimating equations problem under a set of

regularity conditions.

4. Simulation Results

In order to examine the actual performance of our estimation procedure, we have

done a set of Monte Carlo simulations. In the first experiment we have fixed γ = 1

and δ = 0, and simulated 1,000 random numbers of the stable distribution by using

the method of Chamber, Mallows and Stuck (1976). After some experiments, we

have imposed the constraints on the empirical characteristic functions at the points

t = 0.1, 1.1, 2.1, 3.1, 4.1. By using the restrictions at only these five points, we

can get relatively accurate estimation results when the true parameter values are

(α, β) ∈ (0, 1.8) × [−1, 1] . When (α, β) ∈ [1.8, 2) × [−1, 1] , however, we have had

sometimes slow convergence when we had imposed the restrictions at near to the

origin as t = 0.1.

From our experiments, when we have fat tails in the empirical study of returns

sometimes encountered in financial economics and the true value α is near to 2, it

may be enough to use the restrictions on the empirical characteristic functions at

t = 0.6, 1.1, 2.1, 3.1, 4.1 . When γ0 �= 1, δ0 �= 0, it is computationally efficient to

use the iterative procedure as

1. First we obtain a preliminary estimate by using an estimation method as

McCulloch (1986) and obtain γ̂(0), δ̂(0) .

2. Apply the empirical likelihood method to the standardized data

(x1 − δ̂(0))/γ̂(0), . . . , (xn − δ̂(0))/γ̂(0) , and set γ̂(1), δ̂(1) .
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3. We set γ̂ = γ̂(0)γ̂(1), δ̂ = δ̂(0) + δ̂(1)γ̂(0) as the final estimates of the parameters

γ and δ .

Although in our experiments we have set the sample size n = 1000, we can estimate

the key parameters satisfactorily as far as the cases when n ≥ 100 by imposing the

restrictions at only 5 points.

Table 1: Simulation Results of α

We set γ = 1.0 and δ = 0.0 in our simulations. The values of average, maximum, minimum, and

RMSE are calculated from the estimates for each coefficients.

(α, β) Average Max Min RMSE

(1.95,0.0) 1.9492 2.0855 1.7983 0.0460

(1.80,0.0) 1.8021 1.9638 1.6050 0.0618

(1.65,0.0) 1.6502 1.8155 1.4717 0.0619

(1.50,0.0) 1.5023 1.6718 1.3238 0.0592

(1.30,0.0) 1.3045 1.4521 1.1382 0.0534

(1.25,0.0) 1.2539 1.4151 1.1017 0.0521

(1.00,0.0) 1.0018 1.1301 0.8880 0.0436

(0.80,0.0) 0.8004 0.9159 0.6929 0.0365

(1.50,0.5) 1.5037 1.6575 1.3516 0.0601

(1.10,0.5) 1.1052 1.2382 0.9829 0.0455

(1.00,0.5) 1.0024 1.1662 0.8849 0.0406

(0.60,0.5) 0.6009 0.6850 0.5146 0.0275

(0.50,0.5) 0.4996 0.5819 0.4340 0.0240

We repeated our simulations 500 times in each case and calculated the aver-

age, the maximum, the minimum, and RMSE as reported in Table 1. Then we have

compared the sample variance with the asymptotic variance for the parametric max-

imum likelihood estimator, which was obtained numerically by DuMouchel (1971)

and Nolan (2001). We can define the efficiency of our estimator as the ratio of the

asymptotic variance calculated from the inverse of the Fisher information and the

sample variance of estimator in our simulations. we have summarized our numerical

results on efficiency in Table 2 and we have found that there are not many extreme

cases when we have low efficiency and our estimation method gives reasonable val-

ues in most cases. When α = 2 and β �= 0, there is an identification problem and
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we have confirmed that some instability in numerical computations would occur

without any restrictions on the parameter space.

Table 2: Efficiency

We set γ = 1.0 and δ = 0.0 in our simulations. The values in Table 2 are the efficiencies as the ratio

of the asymptotic variance and the sample variance for each coefficients α , β , γ , δ in simulations.

(α, β) α β γ δ

(1.65,0.0) 0.794 0.973 0.986 0.899

(1.50,0.0) 0.851 1.052 0.932 0.985

(1.30,0.0) 0.904 0.966 0.926 0.914

(1.25,0.0) 0.908 0.924 0.906 0.876

(1.00,0.0) 0.949 0.878 0.877 0.904

(0.80,0.0) 0.981 0.813 0.919 0.865

(1.50,0.5) 0.820 0.779 0.929 0.897

(1.10,0.5) 0.945 0.824 0.860 0.890

(1.00,0.5) 0.966 0.783 0.877 0.890

(0.60,0.5) 1.015 0.590 1.004 0.863

(0.50,0.5) 0.987 0.516 1.054 0.815

As the second simulation, we have examined the actual performance of the empir-

ical likelihood estimation for the regression model with the class of stable disturbance

terms, which is defined by

Yj = θ1Xj + uj (j = 1, · · · , n), (4.1)

where θ1 is the unknown (scalar) coefficient, Yj is the dependent variable, Xj is the

explanatory variable, and uj is the disturbance term with the stable distribution.

We have set the (true) parameter values β = 0, γ = 1, δ = 0 in the class of stable

distributions and simulated {Xj} such that they are a sequence of i.i.d. random

variables which follow the log-normal distribution LN(0, 1). We have repeated our

simulations 500 times for the sample size n (= 3, 000) with the true parameter value

θ1 = 1.0, and calculated the average, the maximum, the minimum, and the RMSE

in Table 3.

When α = 1.5 we also have calculated the standard least squares estimator for

the coefficient parameter θ1. The average and its RMSE were 1.0015 and 0.0561,

17



Table 3: Simulation Results for Regression

We set β = δ = 0.0 and set θ = (θ1, α, γ)
′

in our simulations. The values of average, maximum,

minimum, and RMSE of the MEL estimates are calculated from the estimates for each coefficients.

(α, γ, θ1)=(0.6,1.0,1.0) α γ θ1

Average 0.6010 0.9969 1.0009

RMSE 0.0157 0.0412 0.0115

Max 0.6451 1.1429 1.0354

Min 0.5525 0.8509 0.9673

(α, γ, θ1)=(1.5,1.0,1.0) α γ θ1

Average 1.4998 1.0013 1.0010

RMSE 0.0329 0.0222 0.0192

Max 1.5933 1.0708 1.0539

Min 1.4126 0.9386 0.9373

respectively, while the maximum and the minimum were 1.4499 and 0.5873, respec-

tively. It seems that the RMSE of the least squares estimator is more than twice of

the RMSE of the MEL estimator when 1 < α < 2 in our simulations. In addition to

this favorable result on our estimation method, the least squares estimation often

fails when 0 < α < 1 in our limited experiments. On the other hand, we did not have

any convergence problem in the MEL estimation as long as we have enough data size

in the simulations. The MEL estimation procedure for the regression model with

the stable disturbances has reasonable performance in all cases of our simulation.

5. An empirical example of the stock index returns in Japan

As an empirical example, we discuss an analysis of the stock index returns Ri (i =

1, · · · , n) in Japan. We have applied the stable distribution, the CGMY process and

also the AR models with the stable disturbances and the CGMY disturbances. In

our analysis we have used the daily data of TOPIX, which is the major stock index

in Tokyo from March 20, 1990 to August 16, 2005. In each case we took m = 7 as

the restrictions on the empirical characteristic function.

First, we estimated the stable distribution with four parameters and found a

significant departure of the distributions of log-returns from the Gaussian distribu-

tion. The estimated parameters and the standard errors are α̂ = 1.6747 (0.0292),
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γ̂ = 0.7395 (0.0121), β̂ = 0.0210 (0.0880), δ̂ = −0.0227 (0.0223). This agrees

with a wide spread observation on the distributions of daily returns on the stock

markets. Second, we have estimated the CGMY process which includes some sta-

ble distributions as special cases. The estimated parameters and the standard

errors are Ĉ = 0.5633 (0.1610), Ĝ = 0.6794 (0.1841), M̂ = 0.7107 (0.1843),

Ŷ = 0.8696 (0.2270). All estimated parameters of the CGMY process are sta-

tistically significant and the formulation of stable distributions for the stock index

returns as well as the Gaussian distribution may not be appropriate because the

estimates of G and M are quite different from 0.

Since there are non-negligible autocorrelations in the TOPIX returns data, we

have fitted the second order AR model and the disturbances follow the CGMY

process with the restriction G = M . (We have examined several different AR models

and the AR(2) model was chosen by minimizing the resulting empirical AIC.) The

estimated parameters with the restriction and the standard errors are

Ri = −.0231Ri−1 − .2219Ri−2 + ui (5.1)

(0.0165) (0.0165)

and Ĉ = 0.4490 (0.1401), Ĝ = 0.5486 (0.1820), Ŷ = 1.1242 (0.2158). The resulting

estimates are fully consistent with our observations.

However, we have found that when we use finer intervals for stock returns, the

estimate of α becomes smaller in its magniutude, for instance. This contradicts

with the class of stable distributions for stock returns. Although there have been

some empirical findings that the stable distribution may be appropriate for the stock

returns data, it seems that the CGMY model may be better in some sense. Our

empirical investigation suggests that the CGMY process is a good candidate for

applications. Our empirical analysis here, however, is still at the preliminary stage

and a fuller investigation will be needed on the related problems.

6. Conclusions

This paper first develops a new parameter estimation method of stable distribu-

tions based on the empirical likelihood approach. We have shown that we can apply

the empirical likelihood approach to the estimation problem of stable distributions

and the computational burden is not heavy in comparison with the parametric max-

imum likelihood estimation. The maximum empirical likelihood (MEL) estimator
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for the parameters of stable distributions has some desirable asymptotic proper-

ties; it has the consistency, the asymptotic normality, and the asymptotic efficiency

when the number of restrictions is large. Also it is possible to develop the empiri-

cal likelihood ratio statistics for the parameters of stable distributions which have

the desirable asymptotic property such as the asymptotic χ2−distribution and the

asymptotic normal distribution. Also we can construct a test procedure for the null-

hypothesis of restrictions imposed and it is the same as the test of overidentifying

conditions in the econometrics literature. We can use the testing procedures based

on the empirical likelihood ratio statistics in these situations.

Second, it is rather straightforward to extend our estimation method for un-

known parameters of the stable distributions to the estimation of the general Lévy

processes and the infinitely divisible distributions. It is also directly possible to ap-

ply our approach to the nonlinear regression and the estimating equation problems

with infinitely divisible disturbance terms. We have shown that it is possible to es-

timate both the parameters of equations and the parameters of the distributions for

disturbances at the same time by our method. It seems that it is not easy to solve

this estimation problem by the conventional methods proposed in the past studies

and in this sense our estimation method developed has some advantage over other

methods.

Finally, we should mention that our estimation method is so simple that the

results can be extended to some directions. One obvious direction is to extend our

method to the multivariate infinitely divisible distributions and it is straightforward

to do it for the class of symmetric stable distributions. Although we have assumed

that Xk (k = 1, · · · , n) are a sequence of i.i.d. random variables in this paper, there

are many interesting applications when they are dependent.

7. Proof of Theorems

In this mathematical appendix we give the proofs of Theorem 2.2 and Theorem

2.3 in Section 2. We first show the consistency of the MEL estimator, and then

prove its asymptotic normality and asymptotic efficiency when m is large. We set

m = mn = [n1/2−ε] (0 < ε < 1/2). In our proofs we take a compact set Θ for the

parameter space and we assume that the vector of true parameters θ0 is in Int(Θ)

and each elements of Am(θ) and Bm(θ) are bounded.

We first prepare two lemmas (Lemma 1 and Lemma 2), which are needed for the
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proof of Theorems.

Lemma 1 : For a sufficiently large K (> 0), as n → ∞

λmin [Σn(θ0)] > 0 , (7.1)

where λmin[ · ] is the minimum characteristic root of the 2m × 2m matrix

Σn(θ0) =
K2

m
Eθ0

[
g(X1, θ0)g(X1, θ0)

′]
. (7.2)

Proof of Lemma 1: Consider the L2-class of functions c(x) such that

0 <
∫∞
−∞ c(x)2dx < ∞ and define the Fourier tansform by

c∗(t) =
1

2π

∫ ∞

−∞
c(x)e−itxdx .

Then we take c∗(tl) for tl = Kl/m (l = −m, · · · ,−1, 1, · · · , m) such that

0 < 1
m

∑m
l=−m |c∗(tl)|2 < ∞. We also define a 2m × 1 complex vector by

C̃m = [c∗(t1), · · · , c∗(tm), c∗(−t1), · · · , c∗(−tm)]
′
and

g̃(X,θ) = [eit1X−φθ(t1), · · · , eitmX−φθ(tm), e−it1X−φθ(−t1), · · · , e−itmX−φθ(−tm)]
′
.

Then

K2

m2
C̃

′

mEθ0

[
g̃(X,θ0)g̃(X,θ0)

′]
C̃m

=
K2

m2
Eθ0

⎡⎣ m∑
l,l

′
=−m,l�=0,l

′ �=0

c∗(tl)c
∗(tl

′ )(eitlX − φθ0(tl))(e
it

l
′ X − φθ0(tl

′ ))

⎤⎦
=

K2

m2

m∑
l,l′=−m,l�=0,l′ �=0

[c∗(tl)c
∗(tl

′ )(φθ0(tl + tl
′ ) − φθ0(tl)φθ0(tl

′ ))]

−→
∫ K

−K

∫ K

−K
{φθ0(s + t) − φθ0(s)φθ0(t)}c∗(s)c∗(t)dsdt

(7.3)

as m = mn −→ ∞ (n −→ ∞). For sufficiently large K,

A =
∫ K

−K

∫ K

−K
φθ0(s + t)c∗(s)c∗(t)dsdt

∼
∫

t

∫
x

[
1

2π

∫
s
e−i(s+t)xφθ0(s + t)ds

]
× eitxc(x)c∗(t)dxdt

=
∫

x
c(x)2f(x)dx ,
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and

B =

[∫ K

−K

∫ K

−K
φθ0(s)c

∗(s)ds

]2

∼
{∫

x

[
1

2π

∫
s
φθ0(s)e

−isxds
]
c(x)dx

}2

=
[∫

x
c(x)f(x)dx

]2
.

We use the relation (
∫
t a(t)b(t)dt)2 =

∫
s a(s)2ds

∫
t b(t)

2dt − (1/2)
∫
s

∫
t[a(s)b(t) −

a(t)b(s)]2dsdt and set a(s) = c(s)
√

f(s) and b(t) =
√

f(t). Then for sufficiently

large K,

A − B ∼ 1

2

∫
x

∫
y
[c(x) − c(y)]2[

√
f(x)f(y)]2dxdy

=
1

2

∫
x,y

[c(x) − c(y)]2f(x)f(y)dxdy > 0

(7.4)

because c(x) (∈ L2) cannot be constant.

Finally, we use the fact that we can set the complex vectors C̃m and g̃(X,θ0) such

that the corrsponding real vectors are given by

g(X,θ0) =

⎡⎣⎛⎝ 1
2

1
2

1
2i

− 1
2i

⎞⎠⊗ Im

⎤⎦ g̃(X,θ0) ,Cm =

⎡⎣⎛⎝ 1
2

1
2i

1
2

− 1
2i

⎞⎠⊗ Im

⎤⎦−1

C̃m .

Q.E.D.

Lemma 2 : Under the assumptions of Theorem 2.2, we have

lim
K→∞

JK(θ0) = lim
K→∞

lim
n→∞

[
Bm(θ0)

′
Am(θ0)

−1Bm(θ0)
]−1

= I(θ0)
−1 (7.5)

as m = mn → ∞ (n → +∞), where Am(θ0) and Bm(θ0) are defined in Theorem

2.1 at tl = Kl/m (l = 1, · · · , m).

Proof of Lemma 2: We define a 2m × 1 complex vector Φ̃θ by

Φ̃θ = [φθ(t1), · · · , φθ(tm), φθ(−t1), · · · , φθ(−tm)]
′
. Then we find that

Bm(θ0)
′
Am(θ0)

−1Bm(θ0) =

(
∂Φ̃θ0

∂θ
′

)′

{Eθ0 [g̃(X,θ0)g̃(X,θ0)
′
]}−1∂Φ̃θ0

∂θ
′ .

Let wθ(t) be

wθ(t) =
1

2π

∫ ∞

−∞
∂ log fθ(x)

∂θ
e−itxdx , (7.6)

where fθ(x) is the density function with the parameter vector θ and W̃ θ is a 2m×
4 matrix W̃ θ = (wθ(t1), · · · ,wθ(tm),wθ(−t1), · · · ,wθ(−tm))′. Then we have the
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convergence as

K

m
W̃

′
θ0

∂Φ̃θ0

∂θ
′ =

K

m

m∑
l=−m,l�=0

wθ0(tl)

(
∂φθ0(tl)

∂θ

)′

−→
∫ K

−K
wθ0(t)

(
∂φθ0(t)

∂θ

)′

dt (7.7)

as n → ∞. Similarly, we have the convergence

K2

m2
W̃

′

θ0
Eθ0[g̃(X,θ0)g̃(X,θ0)

′
]W̃ θ0

−→
∫ K

−K

∫ K

−K
{φθ0(s + t) − φθ0(s)φθ0(t)}wθ0(s)w

′
θ0

(t)dsdt

(7.8)

as n → ∞. Hence

lim
n→∞

(
W̃

′

θ0

∂Φ̃θ0

∂θ
′

)′

{W̃′
θ0
Eθ0[g̃(X,θ0)g̃(X,θ0)

′
]W̃θ0}−1W̃

′
θ0

∂Φ̃θ0

∂θ
′

=

⎧⎨⎩
∫ K

−K
wθ0(t)

(
∂φθ0(t)

∂θ

)′

dt

⎫⎬⎭
′{∫ K

−K

∫ K

−K
{φθ0(s+t)−φθ0(s)φθ0(t)}wθ0(s)w

′
θ0

(t)dsdt

}−1

×
⎧⎨⎩
∫ K

−K
wθ0(t)

(
∂φθ0(t)

∂θ

)′

dt

⎫⎬⎭ .

(7.9)

We denote the RHS of (7.9) as ΞK(θ0). Then for any (non-degenerate) 2m × 4

matrix v we have⎡⎣(v′∂Φ̃θ0

∂θ
′

)′
{v′Eθ0 [g̃(X,θ0)g̃(X,θ0)

′
]v}−1

(
v

′ ∂Φ̃θ0

∂θ
′

)⎤⎦−1

(7.10)

can be minimized at

v =
{
Eθ0[g̃(X,θ0)g̃(X,θ0)

′
]
}−1 ∂Φ̃θ0

∂θ
′

and the minimum value is⎡⎣(∂Φ̃θ0

∂θ
′

)′
{Eθ0[g̃(X,θ0)g̃(X,θ0)

′
]}−1∂Φ̃θ0

∂θ
′

⎤⎦−1

.

It has been well-known that the asymptotic efficiency bound is given by I(θ0)
−1,

provided that it is non-singular. Thus for any 4 × 1 non-zero vector u ,

u
′
I(θ0)

−1u ≤ u′
⎡⎣(∂Φ̃θ0

∂θ
′

)′
{Eθ0 [g̃(X,θ0)g̃(X,θ0)

′
]}−1∂Φ̃θ0

∂θ
′

⎤⎦−1

u

≤ u
′
⎡⎣(W̃

′
θ0

∂Φ̃θ0

∂θ
′

)′

{W̃′
θ0
Eθ0 [g̃(X,θ0)g̃(X,θ0)

′
]W̃θ0}−1

(
W̃

′
θ0

∂Φ̃θ0

∂θ
′

)⎤⎦−1

u,

(7.11)
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and we have limK→∞ ΞK(θ0) = I(θ0). By using the same arguments developed

by Feuerverger and McDunnough (1981a) for the information matrix and then we

obtain the desired result. Q.E.D.

Proof of Theorem 2.2 :

[i] Consistency: We take a sufficiently large K (> 0) and set m = mn = [n1/2−ε]

(0 < ε < 1/2). We use the fact that

K

m
‖Eθ0 [g(X,θ)]‖2 =

∫ K

0

[
(φR

θ0
(t) − φR

θ (t))2 + (φI
θ0

(t) − φI
θ(t))

2
]
dt + o(1) , (7.12)

where the first term of the right hand side is denoted by Γ2(K,θ0, θ). Define a

criterion function by

Gn(θ) = −1

n

n∑
k=1

log
[
1 + λ

′
(θ)g(Xk, θ)

]
(7.13)

and a function

u(θ) =

√
K
m
Eθ0 [g(X,θ)]

1 + ‖
√

K
m

Eθ0[g(X,θ)]‖
. (7.14)

For any δ > 0 we take a neighborhood N(θ0, δ) and then

sup
θ∗∈Θ\N (θ0,δ)

∣∣∣∣∣∣
√

K

m
Eθ0

[
−u

′
(θ∗)g(X,θ∗)

]
−
⎡⎣ −Γ2(K,θ0, θ

∗)

1 +
√

Γ2(K,θ0, θ
∗)

⎤⎦∣∣∣∣∣∣ = o(1) . (7.15)

We set β = 1/2 and then by using Taylor’s Theorem, there exists a t ∈ (0, 1) such

that

sup
θ

∗∈Θ

∣∣∣∣∣∣nβ

√
K

m

1

n

n∑
k=1

{− log
[
1 + n−βu

′
(θ∗)g(Xk, θ

∗)
]
} −

√
K

m

1

n

n∑
k=1

[
−u

′
(θ∗)g(Xk, θ

∗)
]∣∣∣∣∣∣

≤ sup
θ

∗∈Θ

√
K

m

1

n

∣∣∣∣∣
n∑

k=1

n−β(u
′
(θ∗)g(Xk, θ

∗))2

2 [1 + tn−βu′(θ∗)g(Xk, θ
∗)]2

∣∣∣∣∣ = o(1)

because we have n−β|u′
(θ∗)g(Xk, θ

∗)| ≤ 2
√

2n−β
√

m → 0 and

m−1/2[n−βu
′
(θ∗)g(Xk, θ

∗)]2 → 0 as n −→ ∞. For any ε > 0,

P

⎛⎝ sup
θ∗∈Θ

∣∣∣∣∣∣
√

K

m

1

n

n∑
k=1

[
−u

′
(θ∗)g(Xk, θ

∗)
]
−
√

K

m
Eθ0

[
−u

′
(θ∗)g(X,θ∗)

]∣∣∣∣∣∣ > ε

⎞⎠

≤ 1

ε2
Eθ0

⎡⎣ sup
θ∗∈Θ

K

m

1

n2

∣∣∣∣∣u′
(θ∗)

n∑
k=1

(g(Xk, θ
∗) − Eθ0(g(X,θ∗)))

∣∣∣∣∣
2
⎤⎦ = o(1) .
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Then, by using (7.12) and (7.15), for any δ > 0 there exists n0 and H(δ) > 0 such

that for all n ≥ n0,

P

⎛⎝ sup
θ∗∈Θ\N (θ0,δ)

nβ

√
K

m

1

n

n∑
k=1

{− log
[
1 + n−βu

′
(θ∗)g(Xk, θ

∗)
]
} > −H(δ)

⎞⎠ <
δ

2
.

(7.16)

Since

sup
θ∗∈Θ\N (θ0,δ)

1

n

n∑
k=1

{− log
[
1 + n−βu

′
(θ∗)g(Xk, θ

∗)
]
} ≥ sup

θ∗∈Θ\N (θ0,δ)

Gn(θ∗) ,

we have

P

⎛⎝nβ

√
K

m
sup

θ∗∈Θ\N (θ0,δ)

Gn(θ∗) > −H(δ)

⎞⎠ <
δ

2
. (7.17)

Now we investigate the stochastic order of the Lagrange multipliers at the true

value, which is the solution of

1

n

n∑
k=1

g(Xk, θ0)

1 + λ
′
(θ0)g(Xk, θ0)

= 0 (7.18)

and we write λ(θ0) = ‖λ(θ0)‖ξ and ξ is the 2m × 1 unit vector. By multiplying ξ
′

from the left hand side to (7.18),

0 =

∣∣∣∣∣1nξ
′
(

n∑
k=1

g(Xk, θ0) − ‖λ(θ0)‖
n∑

k=1

g(Xk, θ0)ξ
′
g(Xk, θ0)

1 + ‖λ(θ0)‖ξ′
g(Xk, θ0)

)∣∣∣∣∣
≥ ‖λ(θ0)‖

1 + ‖λ(θ0)‖max1≤k≤n ‖g(Xk, θ0)‖
1

n

n∑
k=1

ξ
′
g(Xk, θ0)g(Xk, θ0)

′
ξ

−
∣∣∣∣∣1n

n∑
k=1

ξ
′
g(Xk, θ0)

∣∣∣∣∣
and we have the inequality

‖λ(θ0)‖ 1

1 + ‖λ(θ0)‖max1≤k≤n ‖g(X,θ0)‖
K2

mn

n∑
k=1

ξ
′
g(Xk, θ0)g(Xk, θ0)

′
ξ

≤
∣∣∣∣∣K

2

mn

n∑
k=1

ξ
′
g(Xk, θ0)

∣∣∣∣∣ .
Since

Eθ0 [

∣∣∣∣∣K2

mn

n∑
k=1

ξ
′
g(Xk, θ0)

∣∣∣∣∣
2

] ≤ (
K2

mn
)2Eθ0

⎡⎣∥∥∥∥∥
n∑

k=1

g(Xk, θ0)

∥∥∥∥∥
2
⎤⎦ = O

(
1

mn

)
,
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and by the use of Lemma 1,

‖λ(θ0)‖ = Op

⎛⎝√ 1

mn

⎞⎠ (7.19)

and

Gn(θ0) ≥ −1

n

n∑
k=1

λ
′
(θ0)g(Xk, θ0) = −‖λ(θ0)‖1

n

n∑
k=1

ξ
′
g(Xk, θ0) , (7.20)

which is of the order Op(m
−1/2n−1/2)Op(

√
m/n) = Op(n

−1). Hence for nay δ > 0

there exists H
′
(δ) > 0 such that for all n ≥ n1,

P
(√K

m
nβGn(θ0) < −H

′
(δ)
)

<
δ

2
. (7.21)

Thus by combining (7.17) and (7.21), we have P
(
θ̂n /∈ N(θ0, δ)

)
< δ and it implies

that θ̂n
p−→ θ0 as n → +∞.

(ii)Asymptotic Normality : We consider the first order condition of the criterion

function ∂Gn(θ̂n)/∂θ = 0 . Then by expanding −∂Gn(θ0)/∂θ around at θ0 = θ̂n,

we have

−√
n

∂Gn(θ0)

∂θ
=

∂2Gn(θ†
n)

∂θ∂θ
′

√
n(θ̂n − θ0) , (7.22)

where we have taken ‖θ†
n − θ̂n‖ ≤ ‖θ̂n − θ0‖. In order to show the asymptotic

normality of the random vector −√
n∂Gn(θ0)/∂θ, we write

−√
n

∂Gn(θ0)

∂θ
=

√
n

1

n

n∑
k=1

1

1 + λ
′
(θ0)g(Xk, θ0)

(
∂g(Xk, θ0)

∂θ
′

)′

λ(θ0)

=
√

n
1

n

n∑
k=1

1

1 + λ
′
(θ0)g(Xk, θ0)

(
−∂Φθ0

∂θ
′

)′

λ(θ0) .

(7.23)

By rewriting (7.18) with respect to the Lagrange multipliers, we have

0 =
1

n

n∑
k=1

K2

m
g(Xk, θ0) −

{
1

n

n∑
k=1

K2

m
g(Xk, θ0)g(Xk, θ0)

′
}

λ(θ0) + r1n , (7.24)

where we set the remainder term

r1n =
1

n

n∑
k=1

K2

m

g(Xk, θ0)(λ
′
(θ0)g(Xk, θ0))

2

1 + λ
′
(θ0)g(Xk, θ0)

.
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By using Lemma 1 and (7.19), we find that ‖r1n‖ is of the order Op(n
−1m−1/2).

Since we have the condition mn/n −→ 0, we can approximate the random vector

−√
n∂Gn(θ0)/∂θ as

−√
n

∂Gn(θ0)

∂θ
=

1√
n

n∑
k=1

(
− K√

m

∂Φθ0

∂θ
′

)′

Sn(θ0)
−1 K√

m
g(Xk, θ0) + op(1) , (7.25)

where

Sn(θ) =
1

n

n∑
k=1

K2

m
g(Xk, θ)g(Xk, θ)

′
.

In order to show the asymptotic normality of (7.25), for any constant vector ζ ∈ R4

we define a set of random variables Xnk (k = 1, . . . , n) by

Xnk = ζ
′
⎛⎝− K√

m

∂Φ
′
θ0

∂θ
′

⎞⎠ [Σn(θ0)]
−1 K√

m
g(Xk, θ0) .

Then by using the Lindberge central limit theorem,

1√
n

n∑
k=1

Xnk
d−→ N(0, ζ

′
IK(θ0)ζ) , (7.26)

where IK(θ0) (= JK(θ0)
−1) = limn→∞[Bm(θ0)

′
Am(θ0)

−1Bm(θ0)] (See Lemma 2).

For an arbitrary vector ζ, we consider the stochastic order of

r2n =
1√
n

n∑
k=1

(
− K√

m

∂Φθ0

∂θ
′

)′

(Sn(θ0)
−1 − Σn(θ0)

−1)
K√
m

g(Xk, θ0) . (7.27)

Then we need to evaluate ‖Sn(θ0)
−1‖‖Sn(θ0) − Σn(θ0)‖‖Σn(θ0)

−1‖. For this pur-

pose we take δ = ε/2 (> 0) and then ‖Sn(θ0) − Σn(θ0)‖ = op(n
−1/2+δ) and

there exists a η (> 0) such that ‖Σn(θ0)‖−1 ≤ η
√

m by Lemma 1. Hence we

have ‖Sn(θ0)
−1‖ = ‖{Σn(θ0) + [Sn(θ0) − Σn(θ0)]}−1‖ = Op(m

1/2) and ‖r2n‖ ≤
Op(mn−(1/2−δ)). Then r2n is op(1) since we have set mn = n1/2−ε (0 < ε < 1/2). By

gathering these evaluations, −√
n∂Gn(θ0)/∂θ converges to the normal distribution

with the variance-covariance matrix IK(θ0) (= JK(θ0)
−1) as n −→ +∞.

Next for the second derivatives we shall show

∂2Gn(θ†
n)

∂θ∂θ
′ = −IK(θ0) + op(1) . (7.28)
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We need to consider each terms of the second derivatives and evaluate their stochas-

tic orders, which are given by

∂2Gn(θ)

∂θ∂θ
′ =

1

n

n∑
k=1

(
−∂Φθ/∂θ

′)′
λ(θ)λ

′
(θ)

(
−∂Φθ/∂θ

′)
[1 + λ

′
(θ)g(Xk, θ)]2

+
1

n

n∑
k=1

(
−∂Φθ/∂θ

′)′
λ(θ)g(Xk, θ)

′ (
∂λ(θ)/∂θ

′)
[1 + λ

′
(θ)g(Xk, θ)]2

− 1

n

n∑
k=1

(
−∂Φθ/∂θ

′)′ (
∂λ(θ)/∂θ

′)
1 + λ

′
(θ)g(Xk, θ)

− 1

n

n∑
k=1

2m∑
l=1

λl(θ)(∂2gl(Xk, θ)/∂θ∂θ
′
)

1 + λ
′
(θ)g(Xk, θ)

.

(7.29)

There are some complications partly because we have 2nd and 3rd terms with the

derivatives of the Lagrange multipliers.

By differentiating (1/n)
∑n

k=1 g(Xk, θ)/[1 + λ
′
(θ)g(Xk, θ)] = 0 with respect to θ,

we have the relation[
1

n

n∑
k=1

K2

m

g(Xk, θ)g(Xk, θ)′

[1 + λ′(θ)g(Xk, θ)]2

]
∂λ(θ)

∂θ
′

=
1

n

n∑
k=1

K

m

(
−∂Φθ/∂θ

′)
1 + λ

′
(θ)g(Xk, θ)

− 1

n

n∑
k=1

K2

m

g(Xk, θ)λ
′
(θ)

(
−∂Φθ/∂θ

′)
(1 + λ

′
(θ)g(Xk, θ))2

.

(7.30)

For the last term of (7.30), we find∥∥∥∥∥1

n

n∑
k=1

(−∂Φθ/∂θ′)′ λ(θ)g(Xk, θ)′

[1 + λ′(θ)g(Xk, θ)]
2

∥∥∥∥∥
≤ max

1≤k≤n

1

[1 + λ
′
(θ)g(Xk, θ)]2

∥∥∥∥∥∂Φθ

∂θ
′

∥∥∥∥∥ ‖λ(θ)‖ max
1≤k≤n

‖g(Xk, θ)‖ ,

is of the order op(1). Hence the second term of (7.29) is of the order op(1). Similarly,

for the first term and the fourth term of (7.29) are dominated by

max
1≤k≤n

1

[1 + λ
′
(θ)g(Xk, θ)]2

‖λ(θ)‖2

∥∥∥∥∥∂Φθ

∂θ
′

∥∥∥∥∥
2

and

max
1≤k≤n

1

|1 + λ
′
(θ)g(Xk, θ)|

∥∥∥∥∥
2m∑
l=1

λl(θ)
∂2gl(Xk, θ)

∂θ∂θ
′

∥∥∥∥∥ ,

respectively. By evaluating the stochastic orders of these terms as before, we find

that they are of the order op(1).
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As the dominant term, we need to evaluate the third term of (7.29). After

straightforward (but tedious) evaluations on the 3rd term of (7.29), it is possible to

show that ∥∥∥∥∥∥∥
⎡⎢⎣1

n

n∑
k=1

(
−∂Φθ/∂θ

′)′
1 + λ

′
(θ)g(Xk, θ)

⎤⎥⎦× [1

n

n∑
k=1

K2

m

g(Xk, θ)g(Xk, θ)′

[1 + λ′(θ)g(Xk, θ)]2

]−1

×
⎡⎣1

n

n∑
k=1

K2

m

g(Xk, θ)λ
′
(θ)

(
−∂Φθ/∂θ

′)
[1 + λ

′
(θ)g(Xk, θ)]2

⎤⎦∥∥∥∥∥∥ = op(1) .

Then for the third term of (7.29), we find∥∥∥∥∥ 1

n

n∑
k=1

(−∂Φθ/∂θ′)′ (∂λ(θ)/∂θ′)
1 + λ′(θ)g(Xk, θ)

− IK(θ0)

∥∥∥∥∥ = op(1) (7.31)

and IK(θ0) = JK(θ0)
−1. By using (7.26) and (7.28), we have established the asymp-

totic normality √
n(θ̂n − θ0)

d−→ N(0,JK(θ0)) . (7.32)

Finally, by taking sufficiently large K > 0 and use Lemma 2, we have that

limK→∞ JK(θ0) = I(θ0)
−1, which is positive definite. Q.E.D.

Proof of Theorem 2.3:

[i] : The first part of the proof of Theorem 2.3 is similar to the proof of the testing

hypothesis problem given by Owen (1990), and Qin and Lawless (1994) except the

fact that the number of restrictions m = mn increases as n → ∞. The precise

evaluations of stochastic orders in our derivations are straightforward as in the proof

of Theorem 2.2.

Let Yk(θ) = λ(θ)
′
g(Xk, θ) (k = 1, · · · , n). Then the criterion function Gn(θ̂n)

at the MEL estimation can be re-written as

Gn(θ̂n) = −1

n

n∑
k=1

[
Yk(θ̂n) − 1

2
Yk(θ̂n)2 +

1

3
Yk(θ

∗)3
]

, (7.33)

where we have ‖θ∗ − θ̂n‖ ≤ ‖θ̂n − θ0‖. We first approximate Yk(θ̂n) by the sum of

four terms as

λ(θ0)
′
g(Xk, θ0) + (θ̂n − θ0)

′ (
∂λ/∂θ

′)′
g(Xk, θ0)

+ λ(θ0)
′ (−∂Φθ0/∂θ

′)
(θ̂n − θ0) + (θ̂n − θ0)

′ (
∂λ/∂θ

′)′ (
−∂Φθ0/∂θ

′)
(θ̂n − θ0)
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because the remaining terms are of smaller orders. Also we notice the fact that

n∑
k=1

|Yk(θ
∗)|3 ≤

n∑
k=1

‖λ(θ∗)
′‖3‖g(Xk, θ

∗)‖3 ,

which is of the order Op(n
−1/2). Then by using (7.22), (7.25),(7.28), (7.30) and

(7.31),
∑n

k=1 Yk(θ̂n) can be approximated by

n∑
k=1

Yk(θ̂n) =
√

nλ(θ0)
′
[

1√
n

n∑
k=1

g(Xk, θ0)

]

+

[√
nλ(θ0)

′ ∂Φθ0

∂θ
′

] ⎡⎣( K√
m

∂Φθ0

∂θ

)′

Σn(θ0)
−1

(
K√
m

∂Φθ0

∂θ
′

)⎤⎦−1 (
∂Φθ0

∂θ
′

)′ [√
nλ(θ0)

]
+ op(1).

(7.34)

Similarly, by expanding
∑n

k=1 Yk(θ̂n)2 around the true parameter values θ0, it can

be further approximated by

n∑
k=1

Yk(θ̂n)2 =
n∑

k=1

[
λ(θ0)

′
g(Xk, θ0)

]2

+

[√
nλ(θ0)

′ ∂Φθ0

∂θ
′

] [
(

K√
m

∂Φθ0

∂θ
)
′
Σm(θ0)

−1(
K√
m

∂Φθ0

∂θ
′ )

]−1

(
∂Φθ0

∂θ
′ )

′ [√
nλ(θ0)

]
+ op(1).

(7.35)

Since the second terms of (7.34) and (7.35) are asymptotically equivalent, it is

straightforward to show that

2n
[
Gn(θ̂n)

]
= 2n [Gn(θ0)]+(θ̂n−θ0)

′
(

K√
m

∂Φθ0

∂θ
′ )Σn(θ0)

−1(
K√
m

∂Φθ0

∂θ
′ )

′
(θ̂n−θ0)+op(1) ,

(7.36)

where 2n [Gn(θ0)] = X
′
nΣn(θ0)

−1Xn+op(1) and Xn = (1/
√

n)
∑n

k=1(K/
√

m)g(Xk, θ0).

Then by using the asymptotic normality of the MEL estimator in Theorem 2.2, we

find that (2.17) converges to χ2(q) distribution (q = 4) as n → +∞ .

[ii] : By using the same arguments in the proof of Theorem 2.2, we approximate
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the test statistic as W2 = X
′
nΣn(θ0)

−1Xn + op(1). Then we rewrite

X
′
nΣn(θ0)

−1Xn − 2m√
4m

=
1√
4m

1

n

n∑
i=1

2m∑
j,k=1

[
1

m
gj(Xi, θ0)gk(Xi, θ0)σ

jk(n) − σjk(n)σjk(n)
]

+
1√
4m

1

n

n∑
i�=i

′
=1

2m∑
j,k=1

[
K2

m
gj(Xi, θ0)gk(Xi′ , θ0)σ

jk(n)

]
,

(7.37)

where we denote g(Xi, θ0) = (gj(Xi, θ0)) and Σn(θ)−1 = (σjk(n)) (i = 1, · · · , n; j, k =

1, · · · , 2m).

The expected values of the right-hand side of (7.37) are zeros and the variance of the

first term is less than (1/n)2(1/4m)(2m)2 = m/n2 and it goes to zero as n → +∞.

Because each elements of the second term in (7.37) are bounded, we can apply the

central limit theorem to obtain

X
′
nΣn(θ0)

−1Xn − 2m√
4m

d−→ N(0, 1) (7.38)

as n → +∞. By applying the similar arguments as in the proof of Theorem 2.2, we

have the desired result. Q.E.D
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