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1 Introduction

In the past two decades a considerable number of studies in finance have been devoted
to the generalizations of the standard theory of financial contingent claims. Because
the option theory originally developed by Black and Scholes (1973) assumed that the
underlying asset price follows the geometrical Brownian Motion and there is a constant
risk-free interest rate, among several other assumptions, there have been some attempts
to relax these aspects of the standard Black-Scholes theory.

One of the important characteristics of many asset prices is the phenomenon that
the volatility of asset returns does not seem to be constant and changes randomly
over time. This empirical observation has led to the observation that volatility should
be incorporated into the analysis as a state variable. In options pricing models, the
effects of stochastic volatility have been investigated by Hull and White (1987, 1988),
Johnson and Shanno (1987), Wiggins (1987), Scott (1987), Stein and Stein (1991),
Heston (1993), and Ball and Roma (1994). Another important aspect in the analysis
of contingent claims has been the fact that the spot interest rate is a fundamental
economic variable in the economy and it cannot be treated as a constant. The feature
that interest rates are stochastic has been incorporated into the modeling of contingent
claims. Merton (1973), Rabinovitch (1989), Turnbull and Milne (1991), and Amin and
Jarrow (1992) are representative of such research. Recently Kim and Kunitomo (1999)
have also developed option pricing theory in a direction closely related to the present
study.

However, attempts to construct the stochastic model for contingent claims that
allow the randomness of both the volatility and interest rates have not been made in
abundance. See Amin and Ng (1993), Bakshi and Chen (1997), Baily and Stulz (1989),
Helmer and Longstaff (1991), and Scott (1997) for this line of investigation. Due to the
fact that we need to treat both stochastic volatility and interest rate processes at the
same time, past valuation methods became complicated in the general case and their
results can hardly be analytical except some special cases of the underlying stochastic
processes. For instance, the closed-form expressions obtained by Bakshi and Chen
(1997), and Scott (1997) contain the Fourier inversion formula even in simple cases.
The methods based on the inversion formulae have been further developed by Bakshi
and Madan (2000), and Duffie, Pan, and Singleton (2000).

In this paper, we shall develop a general framework of the analysis of European-type
contingent claims including the futures price, forward price, and options prices that in-
corporate both the stochastic volatility and stochastic interest rates. Our method is
based on the asymptotic expansion approach called the small disturbance asymptotics
in which we consider a sequence of stochastic processes when the diffusion parameters
of some stochastic processes are small under the probability measure Q, which is equiv-
alent to the historical probability measure P. The small disturbance asymptotics under
Q has been recently developed by Kunitomo and Takahashi (1995, 1998, 2001, 2003a,
2003b, 2004), Takahashi (1999), Yoshida (1992), Takahashi and Yoshida (2001a,b). It
has been mathematically justified by the Malliavin-Watanabe Calculus in the rigorous
manner, which is an infinite dimensional analysis of Wiener functionals and the gener-
alized Wiener functionals on the abstract Wiener space, and it can be also called the
Watanabe-Yoshida theory on Malliavin Calculus. (See Watanabe (1987), Chapter V
of Ikeda and Watanabe (1989), Shigekawa (1998), and Yoshida (1992) for the basics).

2



The details of this theory, the mathematical notations, and applications to derivative
pricing problems have been explained by Kunitomo and Takahashi (1998, 2001, 2003a).
Our formulation of stochastic processes in this paper differs mathematically from that
of Kunitomo and Takahashi (1998, 2003a) because the limiting stochastic processes are
the solution of stochastic differential equations and we need a non-degeneracy condi-
tion for the partial Malliavin covariance of certain random variables. In this sense this
paper gives a new application and a real example of Malliavin-Watanabe Calculus to
financial derivative analysis.

As we shall show in this paper, our approach has the advantage that an explicit
formula is used for the theoretical values of contingent claims which can be decomposed
into the leading term plus several additional terms when both the stochastic volatility
and spot interest rate follow the general class of continuous processes. The leading term
is the well-known formula when both volatility and interest rate are constant and hence
it allows us to explicitly and analytically investigate the effects of stochastic volatility
and stochastic interest rates on contingent claims.

When the volatility function is stochastic, the underlying financial market is incom-
plete. We shall adopt an analogous argument on market completion by Romano and
Touzi (1997) whereupon it is possible to give the financial (or economic) meaning of our
results. Also we shall show that it is straightforward to incorporate more complicated
stochastic models into our framework, including the model for the HJM term structure
of interest rates model.

In Section 2 we provide the general framework of our analysis that explains when
the spot interest rate and the volatility of security price follow diffusion processes.
Then in Section 3 we present the main results on the futures price, forward price, and
European options prices. Section 4 provides a numerical example with some modified
CIR-type interest rate and volatility processes and gives some evidence on the numerical
accuracy of our formulae. Section 5 offers discussions on some related issues including
an interpretation of our framework, the risk premium functionals, the change of measure
problem, and an extension to the HJM-type term structure of interest rates. Also some
concluding remarks are given in Section 5.3. Section 6 is the mathematical appendix
for some proofs omitted in Sections 2 and 3.

2 Asymptotic Behavior of the Underlying Asset Price
Process

Let (Ω,F , {Ft}t∈[0,T ], Q) be a complete filtered probability space 1 with the probability
measure Q. We consider a continuous time economy where some securities and bonds
are traded in the interval [0, T ] (T < +∞) without any friction and we assume that
there does not exist any default risk nor any transaction costs associated with bonds
and securities. Let S

(ε,δ)
t (0 < t ≤ T ) be the price of the underlying security at t with

two parameters 0 < ε, δ ≤ 1 . In this section we focus on the situation that this security
pays no dividends and the price process follows the stochastic differential equation

S
(ε,δ)
t = S0 +

∫ t

0
r(ε)
s S(ε,δ)

s ds +
∫ t

0
σ(δ)

s S(ε,δ)
s dW1s ,(2.1)

1 We use the standard arguments on the completion of the original probability space without any
explicit exposition in this paper.
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where r
(ε)
t is the instantaneous spot interest rate at t with the parameter 0 < ε ≤ 1,

σ
(δ)
s is the instantaneous volatility at t with the parameter 0 < δ ≤ 1, and W1t is

the Brownian motion under Q . The non-negative stochastic process σ
(δ)
s follows the

stochastic differential equation :

σ(δ)
s = σ0 +

∫ s

0
µσ(σ(δ)

u , u, δ)du + δ

∫ s

0
wσ(σ(δ)

u , u)dW2u ,(2.2)

where W2t is the second Brownian motion under Q. We note that when the volatility
function is not a traded asset, the markets for the contingent claims on the underlying
asset {S(ε,δ)

t } could be incomplete.
For the interest rate processes, we assume that there exists a locally riskless money

market and the money market account (accumulation factor) is given by M
(ε)
t =

exp(
∫ t
0 r

(ε)
s ds) . We also consider the situation when there also exist bond markets

in the economy and let P (ε)(s, t) (0 ≤ s ≤ t) be the discount bond price at s with the
maturity date t . We assume that the non-negative (instantaneous) spot interest rate
process r

(ε)
t , which is consistent with the money market and discount bond markets,

follows the stochastic differential equation :

r(ε)
s = r0 +

∫ s

0
µr(r(ε)

u , u, ε)du + ε

∫ s

0
wr(r(ε)

u , u)dW3u ,(2.3)

where W3t is the third Brownian motion under Q.
As the simplest case, we adopt the situation when all discount bond prices P (ε)(s, t)

(0 ≤ s ≤ t ≤ T ) are solely determined by the single factor {r(ε)
t }. As the more general

case, we shall discuss the HJM term structure of interest rates model in which the spot
interest rate is not necessarily Markovian. (See (5.73) and (5.74).)

In (2.1)-(2.3) we consider the situation when three Brownian motions under Q are
correlated and their instantaneous correlations are given by

EQ
[

dWt dW ′
t

]
=

⎛
⎜⎝ 1 ρσ ρr

ρσ 1 ρσr

ρr ρrσ 1

⎞
⎟⎠ dt ,(2.4)

where we denote dWt = (dW1t, dW2t, dW3t)′ .

In Sections 2 and 3 we treat both the interest rate process and the volatility function
of the asset returns as Markovian processes under the probability measure Q. The
form of the stochastic differential equations in (2.1)-(2.3) should be interpreted as the
representation under the probability measure Q, (alternatively we write Q(σ(δ), r(ε))),
which is equivalent to the historical probability measure P for the observed price process
and the interest rate process. The probability measure Q is a martingale measure in
the sense that the discounted security price process

Y
(ε,δ)
T = S

(ε,δ)
T exp

(
−
∫ T

t
r(ε)
s ds

)
(2.5)

is a martingale under Q given the volatility process and the interest rate process. We
shall further discuss the related interpretation in Section 5.1, which is similar to the
one by Romano and Touzi (1997).
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Let G(S(ε,δ)
T ) be the non-negative payoff function of the European contingent claim

at T on the underlying security {S(ε,δ)
t }. The contingent claims are regarded as Wiener

functionals in the Wiener space that are not necessarily smooth in the standard math-
ematical sense. In this paper we try to analyze the theoretical values of the contingent
claims based on the payoff, which is a function of time T security price. The immediate
examples of this type are the forward contract, the futures contract, and the standard
European options contracts. For our purpose, we need to define the theoretical values
of this type of contingent claim 2 .

Definition 2.1 : The theoretical value of the European contingent claim with the ter-
minal payoff function G(S(ε,δ)

T ) at time t is defined by

G
(ε,δ)
t = EQ[G(S(ε,δ)

T ) exp

(
−
∫ T

t
r(ε)
s ds

)
|Ft](2.6)

provided that the expected value is finite, where the expectation operator is taken with
respect to a probability measure Q given the σ-field Ft.

We shall analyze the effects of the stochastic volatility and the stochastic interest
rates on the theoretical value of the contingent claims when both ε and δ are small.
In order to develop the asymptotic expansion approach when both δ and ε are small,
we need to have some regularity conditions so that the solutions of (2.1)-(2.3) are well-
behaved and the stochastic expansions of the stochastic processes {r(ε)

t } and {σ(δ)
t } can

be allowed.

Assumption I : (i) Given 0 < ε, δ ≤ 1 the drift functions µr(r
(ε)
t , t, ε), µσ(σ(δ)

t , t, δ)
(R×[0, T ]×[0, 1) �→ R ) and the diffusion functions wr(r

(ε)
t , t), wσ(σ(δ)

t , t) (R×[0, T ] �→
R ) are progressively measurable such that r

(ε)
t and σ

(δ)
t are Ft-measurable. (ii) For

the (finite) terminal period T > 0 the stochastic processes r
(ε)
t and σ

(δ)
t satisfy the

conditions 0 <
∫ T
0 (σ(δ)

s )2ds < +∞ (a.s.) and

EQ[e2
∫ T

0
r
(ε)
s ds + e6

∫ T

0
(σ

(δ)
s )2ds] < +∞ .(2.7)

2 It has been well recognized that, in the present situaton, the market for the contingent claims is
incomplete unless the volatility is not a traded asset or not perfectly correlated with any other traded
asset. This implies that we cannot find a self-financing portfolio that replicates the contingent claim and
consequently leads to a unique price for it. Mathematically, the question of completeness is linked with
the uniqueness of the equivalent martingale measure Q and the representaion property as (2.6). Then
there could be a range of prices for contingent claims that are arbitrage-free. These have been systemati-
cally investigated by Karatzas and Shereve (1998), for instance. Provided that there are no arbitrage op-

portunities, we have the relation: G
(ε,δ)
t ∈ [GL

t , GU
t ], where GL

t = infQ EQ[G(S
(ε,δ)
T ) exp(−

∫ T

t
r
(ε)
s )|Ft]

and GU
t = supQ EQ[G(S

(ε,δ)
T ) exp(−∫ T

t
r
(ε)
s )|Ft]. To choose an equivalent martingale measure in a

meaningful way is the subject of ongoing research. One candidate is to adopt the general equilibrium
approach including Cox, Ingersoll and Ross (1985), and Bakshi and Chen (1997). By specifying the
risk-preferences of the investors and the state processes of the economy, it is possible to obtain a con-
ditional expectation representation under the corresponding equivalent martingale measure Q. The
second strategy involves finding a selection principle to reduce the class of all possible measures Q to
a subclass within which a unique measure can be found such as the minimal martingale measure by
Heath, Platen and Schweizer (2001), for instance. A third one, market completion by means of traded
contingent claims à la Romano and Touzi (1997), will be put forth in Section 5.1 in more depth. With
these possibilities in mind which are consistent with our formulation, we continue our discussion by
fixing a martingale measure Q in Sections 2-4.
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Assumption II : (i) The drift functions are continuously twice differentiable and
their first and second derivatives are bounded uniformly in ε and δ . The diffusion func-
tions are continuously differentiable and their first derivatives are bounded uniformly
in ε and δ. (ii) For any 0 < t ≤ T there exist unique solutions {rt} and {σt} for the
ordinary differential equations

rt = r0 +
∫ t

0
µr(rs, s, 0)ds ,(2.8)

and
σt = σ0 +

∫ t

0
µσ(σs, s, 0)ds .(2.9)

(iii) Suppose δ is a function 3 of ε with the notation δ = δ(ε). There exists a positive
constant c (0 < c < ∞) such that

lim
ε→0

δ(ε)
ε

= c .(2.10)

The uniquness and existence for the stochastic differential equations of (2.2) and (2.3)
follow from Assumption II-(i). A set of standard conditions for them are the Lipschitz
type conditions and the growth condition on the drift functions and diffusion functions
for {r(ε)

t } and {σ(δ)
t } that have been discussed by Chapter IV of Ikeda and Watanabe

(1989) or Nagai (1999), for instance. We need an integrability condition given by
Assumption I-(ii) for the security price process S

(ε,δ)
t . Also we need some smooth

conditions of underlying stochastic processes with respect to the parameters ε and δ.
By applying Ito’s lemma, the solution of (2.1) can be expressed as

S
(ε,δ)
t = S0 exp

{∫ t

0
σ(δ)

s dW1s − 1
2

∫ t

0

(
σ(δ)

s

)2
ds +

∫ t

0
r(ε)
s ds

}
.(2.11)

Under Assumption I-(ii) the first two parts of (2.11) consist an exponential martingale
and also the security price S

(ε,δ)
t is square-integrable.

In the rest of this section, we shall investigate the asymptotic behavior of the security
price process in the situation 4 when ε ↓ 0 and δ ↓ 0 under Assumption II. It should be
noted that Assumption II can be relaxed with some additional complications. We shall
derive the explicit form of S

(ε,δ)
t for any 0 < t ≤ T in this small disturbance asymptotic

approach.
Let

A(ε)
r (t) =

1
ε
[r(ε)

t − rt] ,(2.12)

3 It is certainly possible to analyze other situations including the cases when c = 0 or c = ∞ by our
method with some complications. We shall use the notation δ for δ(ε) for simplicity.

4 Recently, Sircar and Papanicolau (1999) and Fouque et. al. (2001) have used “the small randomness
of volatility”, which is related to but different from the small disturbance asymptotics developed by
Kunitomo and Takahashi (1995, 1998, 2001, 2003a, 2003b), Takahashi (1995, 1999), Kim and Kunitomo
(1999).
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where rt = r
(0)
t is the solution satisfying the ordinary differential equation (2.8). By

substituting r
(ε)
t = rt + εA

(ε)
r (t) into (2.3), we have

εA(ε)
r (t) =

∫ t

0

{
[µr(rs + εA(ε)

r (s), s, ε)− µr(rs, s, ε)] + [µr(rs, s, ε)− µr(rs, s, 0)]

}
ds

+ε

∫ t

0
wr(rs + εA(ε)

r (s), s)dW3s .(2.13)

Then by using Assumption II-(i), we can find positive constants c1 and c2 such that for
any t

|A(ε)
r (t)| ≤

∫ t

0
[c1|A(ε)

r (s)| + c2]ds + |
∫ t

0
wr(rs + εA(ε)

r (s), s)dW3s| .(2.14)

Also by using the standard arguments in stochastic analysis, martingale inequality, and
the Gronwall inequality, we can find positive constants c3 and c4 such that

EQ[|A(ε)
r (t)|2] ≤ c3e

c4t , EQ[ sup
0≤t≤T

|A(ε)
r (t)|2] < +∞(2.15)

uniformly with respect to ε . Hence we confirm the convergence in probability that
r
(ε)
t → rt uniformly with respect to t as ε ↓ 0 .

Let
B(ε)

r (t) =
1
ε2

[r(ε)
t − rt − εAr(t)] ,(2.16)

where 5 Ar(t) = p limε↓0 A
(ε)
r (t) . Then by substituting r

(ε)
t = rt + εAr(t) + ε2B

(ε)
r (t)

into (2.3), we can use a similar argument recursively to lead that EQ[|B(ε)
r (t)|2] is

bounded uniformly with respect to t and ε and we have the uniform convergence of
A

(ε)
r (t) to Ar(t) with respect to t as ε ↓ 0 in probability. We need similar arguments

on the existence and convergence of random variables Ar(t), which we have omitted.
By using the above arguments under Assumption II, the stochastic expansion of the
instantaneous interest rate r

(ε)
t can be expressed by

r
(ε)
t = rt + ε Ar(t) + R1(2.17)

as ε ↓ 0, where the remainder term R1 is in the order op(ε). Then by using (2.13) and
convergence arguments of its each terms, Ar(t) can be regarded as the solution of the
stochastic differential equation :

Ar(t) =
∫ t

0
[∂µr(rs, s, 0)Ar(s) + ∂εµr(rs, s, 0)]ds +

∫ t

0
wr(rs, s)dW3s ,(2.18)

where we denote

∂µr(rs, s, 0) =
∂µr(r

(ε)
s , s, ε)

∂r
(ε)
s

∣∣∣∣
r
(ε)
s =rs,ε=0

,(2.19)

and

∂εµr(rs, s, 0) =
∂µr(r

(ε)
s , s, ε)
∂ε

∣∣∣∣
ε=0

.(2.20)

5 By using (2.13) and (2.18) it is possible to show E[sup0<t≤T ‖A(ε)
r (t) − Ar(t)‖] → 0 by using

the standard but quite similar arguments as in Mathematical Appendices of Kunitomo and Takahashi
(2003a).
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In order to have a concise representation for Ar(t), let Y r
t be the solution of dY r

t =
∂µr(rt, t, 0)Y r

t dt with the initial condition Y r
0 = 1. Then (2.18) can be solved as

Ar(t) =
∫ t

0
Y r

t (Y r
s )−1[wr(rs, s)dW3s + ∂εµr(rs, s, 0)ds] .(2.21)

Similarly, under Assumption II we can expand the integral equation (2.2) with re-
spect to δ . By using the same argument as r

(ε)
t , the stochastic expansion of stochastic

volatility σ
(δ)
t can be also expressed by

σ
(δ)
t = σt + δ Aσ(t) + R2(2.22)

as δ ↓ 0 , where the leading term σt is the solution of the ordinary differential equation
(2.9), the second term is given by Aσ(t) = p limδ↓0 A

(δ)
σ (t) with A

(δ)
σ (t)(= [σ(δ)

t −σt]/δ),
and the remainder term R2 is of the order op(δ). Let Y σ

t be the solution of dY σ
t =

∂µσ(σt, t, 0)Y σ
t dt with the initial condition Y σ

0 = 1. Then, because Aσ(t) is the solution
of the corresponding stochastic differential equation as (2.18) for {σ(δ)

t }, we can express
Aσ(t) as

Aσ(t) =
∫ t

0
Y σ

t (Y σ
s )−1[wσ(σs, s)dW2s + ∂δµσ(σs, s, 0)ds] ,(2.23)

where ∂wσ(σs, s, 0) and ∂δµσ(σs, s, 0) are defined in the same ways as (2.19) and (2.20).
In order to state the asymptotic behavior of the security price process S

(ε,δ)
t as

ε ↓ 0 and δ ↓ 0, we need the new mathematical device of the Malliavin-Watanabe
Caluculus recently developed in stochastic analysis. Let the H-differentiation be defined
by DFh(w) = limε→0(1/ε)[F (w + εh) − F (w)] for a Wiener functional F (w) and
h ∈ M, where M is the Cameron-Martin subspace of continuous functions with square-
integrable derivatives in the Wiener space W. Then the Malliavin covariance is given
by σMC(F ) =< DF (w), DF (w) >H , where < · >H is the inner product of M space.
We summarize the first result on the asymptotic behavior of the security price process
S

(ε,δ)
t as ε ↓ 0 and δ ↓ 0 in the next lemma. The proof is given in Section 6.1.

Lemma 2.1 : (i) Under Assumptions I and II,

sup
0≤s≤t≤T

|S(ε,δ)
s − Ss| → 0 (a.s.),(2.24)

as ε ↓ 0 and δ ↓ 0, where St is the solution of the stochastic differential equation

dSt = rtStdt + σtStdW1t ,(2.25)

and {rt} and {σt} are the solutions of the ordinary differential equations (2.8) and
(2.9).
(ii) Let σMC(S(ε,δ)

t ) be the Malliavin covariance of the stochastic process S
(ε,δ)
t and

S
(ε,δ)
t ∈ D2,1(R) 6 . Then we have

sup
0≤s≤t≤T

|σMC(S(ε,δ)
s ) − S2

s

∫ s

0
σ2

udu| → 0 (a.s.)(2.26)

6 The definitions of the H-differentiation and the space D2,1 have been adopted from Chapter V of
Ikeda and Watanabe (1989) as the standard reference. See Kunitomo and Takahashi (1998, 2003a) for
more details. Also we note that Yoshida (2003) has recently developed the general theory of conditional
expansions in the Malliavin Calculus and our formulation could be interpreted as a special case of his
Example 4.
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as ε ↓ 0 and δ ↓ 0 under Assumptions I and II.

Next we shall derive the asymptotic expansion of the security price process S
(ε,δ)
t

as ε ↓ 0 and δ ↓ 0 . For this purpose we insert (2.17) and (2.22) into (2.11). By
evaluating probability order calculations, we obtain the expressions for the first term
of the exponential part in (2.11) as

∫ t

0

[
r(ε)
s − 1

2

(
σ(δ)

s

)2
]
ds =

∫ t

0

(
rs − σ2

s

2

)
ds + ε

∫ t

0
Ar(s)ds − δ

∫ t

0
σsAσ(s)ds + R3

and for the second term of the exponential part in (2.11) as
∫ t

0
σ(δ)

s dW1s =
∫ t

0
σsdW1s + δ

∫ t

0
Aσ(s)dW1s + R4 ,(2.27)

where Ri (i = 3, 4) are the remaining terms of the higher orders.
If we set the leading term as

X1t =
∫ t

0
σsdW1s ,(2.28)

we can write (2.11) as

S
(ε,δ)
t = S0 exp

{[
X1t +

∫ t

0

(
rs − σ2

s

2

)
ds

]

+ε

∫ t

0
Ar(s)ds + δ

[∫ t

0
Aσ(s)dW1s −

∫ t

0
σsAσ(s)ds

]
+ R5

}
,(2.29)

and

exp

[∫ T

0
r
(ε)
t dt

]
= exp

{∫ T

0
rsds + ε

∫ T

0
Ar(s)ds + R6

}
,(2.30)

where R5 and R6 are the remaining terms of higher orders.
Then we can obtain a stochastic expansion of the price process of the security at time
t with respect to ε and δ, which can be summarized in the next lemma.

Lemma 2.2 : Under Assumptions I and II, an asymptotic expansion of the price
process of the security S

(ε,δ)
t at any particular time point t as ε ↓ 0 and δ ↓ 0 is given by

S
(ε,δ)
t = S0 exp

{
[X1t +

∫ t

0

(
rs − σ2

s

2

)
ds]

+ ε[
Σ(r)

12 (t)
σ(t)2

X1t + λr(t)] + δΣ(σ)
12 (t)

[
X1t

2

σ(t)4
− X1t

σ(t)2
− 1

σ(t)2

]

+ δλσ(t)[
X1t

σ(t)2
− 1] + [εz1t + δ (z3t − z2t) + R5]

}
,(2.31)

where zit (i = 1, 2, 3) are the random variables with EQ[zit|X1t] = 0, EQ[z2
it] < ∞ (i =

1, 2, 3),

σ(t)2 = V ar(X1t) =
∫ t

0
σ2

sds ,(2.32)
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Σ(r)
12 (t) = ρr

∫ t

0

(∫ t

u
Y r

s ds

)
(Y r

u )−1wr(ru, u)σudu ,(2.33)

λr(t) =
∫ t

0

(∫ t

u
Y r

s ds

)
(Y r

u )−1∂εµr(ru, u, 0)du ,(2.34)

Σ(σ)
12 (t) = ρσ

∫ t

0

(∫ t

u
σsY

σ
s ds

)
(Y σ

u )−1wσ(σu, u)σudu ,(2.35)

λσ(t) =
∫ t

0

(∫ t

u
σsY

σ
s ds

)
(Y σ

u )−1∂δµσ(σu, u, 0)du ,(2.36)

and R5 is the remainder term of the order op (ε, δ) .

Let X
(ε,δ)
t = log(S (ε,δ)

t ) and X
(ε,δ)
1t =

∫ t
0 σ

(δ)
s W1s . Then Assumption I implies the

boundedness of some expectations such that EQ[|X (ε,δ)
t |2] < +∞ and EQ[exp(X (ε,δ)

t ))] <
+∞ by using the Cauchy=Schwartz inequality and Theorem 5.3 of Ikeda=Watanabe
(1989) for exponential martingales. The remaining proof of Lemma 2.2 is given in
Section 6.2. We should note that we have the non-degeneracy of the random variable
X1t for any 0 < t ≤ T as the key condition from our Assumption I-(ii). Let also
σMC(X (ε,δ)

1t ) be the Malliavin covariance of X
(ε,δ)
1t , which is the partial Malliavin co-

variance of the three dimensional process in (2.1)-(2.3). Then the integrated volatility
function σ(t)2 can be interepreted as the limit of the corresponding partial Malliavin
covariance σMC(X (ε,δ)

1t ) as ε ↓ 0 .

By evaluating inequalities and other related arguments, it is possible to take the
expectation operator and its asymptotic expansion in terms of ε and δ in (2.6) with
respect to the probability measure Q when

G(S(ε,δ)
T ) ≤ max{K1, S

(ε,δ)
T }(2.37)

for some constant K1 . Because the derivative securities, such as forward contracts,
futures contracts, and standard option contracts, in the next section satisfy this condi-
tion, we can take the expectation operators and their asymptotic expansions formally
in our discussions.

3 Futures, Forward, and Options Prices

3.1 Futures and Forward Prices

First, we consider the theoretical values of the futures contract written on the security
S

(ε,δ)
t that matures at time T. The standard financial theory asserts that the futures

price at time zero, F0, is determined by

F0 = EQ
[
S

(ε,δ)
T

]
,(3.38)

where the expectation is taken with respect to the probability measure Q. (See Chapter
8 of Duffie (1996) for the simple arbitrage free arguments for the forward contract and
the futures contract, for instance.) By applying Lemma 2.1 and using the moment rela-
tions that for X1T ∼ N (0, σ(T )2) we have E[exp(X1T )] = exp(σ(T )2/2), E[X exp(X1T )] =
σ(T )2 exp(σ(T )2/2), and E[X2

1T exp(X1T )] = σ(T )2[σ(T )2 + 1] exp(σ(T )2/2). Then we
immediately obtain the following result.
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Theorem 3.1 : Under Assumptions I and II, an asymptotic expansion of the theo-
retical value of the futures contract at time zero with the delivery time T, F0, is given
by

F0 = S0 exp

(∫ T

0
rsds

){
1 + ε Σ(r)

12 (T ) + ε λr(T )
}

+ o(ε, δ)(3.39)

as ε ↓ and δ ↓ 0, where Σ(r)
12 (T ) and λr(T ) are given by (2.33) and (2.34), respectively.

We should notice that there is no effect due to the stochastic volatility in (3.39) up
to the order of o(ε, δ), although there might be some effects on the higher order terms.
From this result, we can predict that the effect of volatility is considerably smaller
than the effect of stochastic interest rate on the futures price. Next we consider the
theoretical value of the forward contract written on the security S

(ε,δ)
t that matures at

time T . Standard financial theory asserts that the forward price at time zero, f0, is
determined by

f0 =
EQ

[
exp

(
− ∫ T

0 r
(ε)
s ds

)
S

(ε,δ)
T

]
EQ

[
exp

(
− ∫ T

0 r
(ε)
s ds

)] .(3.40)

By using the fact E[exp(aX)] = exp(a2

2 Σ) when X ∼ N [0, Σ] for any constant a, the
denominator of (3.40) can be written as

EQ

[
exp

(
−
∫ T

0
r(ε)
s ds

)]
= exp

(
−
∫ T

0
rsds − ε λr(T )

)
× [1 + R6] ,

where R6 is the remainder term of the order op(ε). Then we have the following result
on the forward price.

Theorem 3.2 : Under Assumptions I and II, an asymptotic expansion of the theoret-
ical value of the forward contract at time zero with the delivery time T, f0, is given
by

f0 = S0 exp

(∫ T

0
rsds

)
× {1 + ε λr(T )} + o(ε, δ)(3.41)

as ε ↓ 0 and δ ↓ 0 , where λr(T ) is given by (2.34).

Let the first term in (3.39) be FD and set the coefficient of ε in (3.39) to be Fr .
Then Theorem 3.1 asserts that the futures price can be decomposed into the futures
price under constant interest rate and the adjustment terms as

F0 = FC + [FD − FC ] + ε Fr + o(ε, δ)(3.42)

where FC is the futures price under constant interest rate r0 and volatility σ0. The
second term in (3.42) represents the adjustment value induced by the deterministic
interest rate. The third term is the adjustment value induced by incorporating the
stochastic interest rate. Because Y r

s in Σ(r)
12 (T ) takes only positive values, we have the

following result:

11



Corollary 3.1 : Under Assumptions I and II, we have the relations depending on ρr

such that

lim
ε,δ↓0

1
ε

[F0 − f0] > 0 if ρr > 0 ,(3.43)

lim
ε,δ↓0

1
ε

[F0 − f0] = 0 if ρr = 0 ,(3.44)

lim
ε,δ↓0

1
ε

[F0 − f0] < 0 if ρr < 0 .(3.45)

There have been some discussions on the relation between the futures price and the
forward price when the short term interest rate is stochastic. First, when the interest
rate is independent of the underlying asset, the futures price is equal to the forward
price, which is also the direct result from (3.40). Second, when the interest rate has
positive (negative) correlation with the underlying asset, the futures price is greater
(smaller) than forward price. This result has been also presented in Equation (26) of
Cox, Ingersoll, and Ross (1981). From our analysis, we have found that the relations
between the futures price and the forward price mentioned above hold even when the
volatility of underlying asset is stochastic in the small disturbance asymptotics sense.

3.2 Options

We consider the theoretical value of the European call options contract written on the
security S

(ε,δ)
t that matures at time T. For a given exercise price K at the expiry date

T, the theoretical price of such options at the initial date, V0, can be given by

V0 = EQ
[[

Z
(ε,δ)
T

]+]
(3.46)

under the probability measure Q, where [·]+ denotes the function max[0, ·] and

Z
(ε,δ)
T = exp

(
−
∫ T

0
r
(ε)
t ds

) [
S

(ε,δ)
T − K

]
.

By substituting (2.31) into Z
(ε,δ)
T and using (2.30) on the discount factor, we can obtain

the expression for Z
(ε,δ)
T as

Z
(ε,δ)
T = Z0 + δZδ

1 + εZε
1 + δ(z∗3T − z∗2T ) + εz∗1T + R7 ,(3.47)

where

Z0 = S0 exp
(

X1T − 1
2
σ2(T )

)
− K exp

(
−
∫ T

0
rtdt

)
,

Zδ
1 = S0 exp

(
X1T − 1

2
σ(T )2

)
×
[
Σ(σ)

12 (T )
σ(T )2

(
X2

1T

σ(T )2
− X1T − 1

)
+ λσ(T )

(
X1T

σ(T )2
− 1

)]
,

Zε
1 = K exp

(
−
∫ T

0
rtdt

)
×
{

Σ(r)
12 (T )

σ(T )2
X1T + λr(T )

}
,
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and R7 is the remainder term of the order op(ε, δ). In the above expression the random
variables z∗iT (i = 1, 2, 3) have been defined by z∗1T = z1T K exp

(
− ∫ T

0 rtdt
)

and z∗iT =
ziTS0 exp(X1T − 1

2σ(T )2) (i = 2, 3). Then we need to evaluate

V0 = EQ[Z0I(S(ε,δ)
T − K)] + EQ[Z(ε,δ)

1 I(S(ε,δ)
T − K)](3.48)

+EQ[Z(ε,δ)
1 I(S(ε,δ)

T − K)] + EQ[R7I(S(ε,δ)
T − K)] ,

where I( · ) is the indicator function of [0, +∞) . By the result of lengthy derivations as
outlined in Section 6.3, we have finally obtained the theoretical value of the European
call options contract as the next theorem.

Theorem 3.3 : Under Assumptions I and II, an asymptotic expansion of the theo-
retical value of the European call option with maturity T when the interest rate and
volatility are stochastic, V0, is given by

V0 =

[
S0Φ(d1) − K exp

(
−
∫ T

0
rtdt

)
Φ(d2)

]

+ ε [
Σ(r)

12 (T )
σ(T )

S0φ(d1) + λr(T )Φ(d2)K exp

(
−
∫ T

0
rtdt

)
]

+ δ [−Σ(σ)
12 (T )
σ(T )2

d2 +
λσ(T )
σ(T )

]S0φ(d1) + o(ε, δ)(3.49)

as ε, δ ↓ 0, where Φ(·) is the distribution function of the standard normal variable, φ(·)
is its density function, d2 = d1 − σ(T ) ,

d1 =
1

σ(T )

[
log

S0

K
+
∫ T

0

(
rs +

1
2
σ2

s

)
ds

]
,(3.50)

and also Σ(r)
12 (T ),Σ(σ)

12 (T ), λr(T ) and λσ(T ) are defined by (2.33), (2.35), (2.34), and
(2.36), respectively.

Let the first term in (3.49) be BSD and we set the coefficients of ε and δ to be BSr

and BSσ , respectively. Then Theorem 3.3 asserts that the European stock call option
price can be decomposed into the original Black-Scholes price and the adjustment terms
as

V0 = BS + [BSD − BS] + εBSr + δ BSσ + o(ε, δ)(3.51)

where BS stands for the original Black-Scholes option price under the assumptions
of constant interest rate and volatility. The second term in (3.51) represents the ad-
justment value induced by the deterministic interest rate, which in itself relies on the
assumed interest rate and volatility model. The third term and the fourth term are the
adjustment values induced by the stochastic interest rate and the stochastic volatil-
ity, respectively. When the interest rate is stochastic and volatility is constant, for
instance, the valuation problem in this case has been investigated by Kim and Kunit-
omo (1999). Also when rs = r0 and ε = 0, the model corresponds to those for many
stochastic volatility models, which have been studied by several researchers. Hence our
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results include many previous studies as special cases in the sense of small disturbance
asymptotics.

By using a similar procedure for the valuation of European call options, we can
derive the theoretical value for the European put options whose payoff function is
given by [K − S

(ε,δ)
T ]+ at the maturity time T. By deriving the asymptotic expansion

of the random variable [−Z
(ε,δ)
T ]+, we have the next result:

Theorem 3.4 : Under Assumptions I and II, an asymptotic expansion of the theo-
retical value of the European put option with maturity T when the interest rate and
volatility are stochastic, V ∗

0 , is given by

V ∗
0 =

[
K exp

(
−
∫ T

0
rtdt

)
Φ(−d2) − S0Φ(−d1)

]

+ ε [
Σ(r)

12 (T )
σ(T )

S0φ(d1) − λr(T )Φ(−d2)K exp

(
−
∫ T

0
rtdt

)
]

+ δ [−Σ(σ)
12 (T )
σ(T )2

d2 +
λσ(T )
σ(T )

]S0φ(d1) + o(ε, δ)(3.52)

as ε, δ ↓ 0, where Φ(·) is the distribution function of standard normal variable, φ(·) is
its density function, and di (i = 1, 2), Σ(r)

12 (T ), Σ(σ)
12 (T ), σ(T ), λr(T ), and λσ(T ) are

the same as in Theorem 3.3 .

4 Numerical Examples and Related Analysis

4.1 CIR-Type Interest Rates and Volatility

In this section, we give some numerical examples to illustrate our theoretical results
in Section 3. For this purpose we assume that the spot interest rate and volatility
processes are of the CIR square-root process originally proposed by Cox, Ingersoll, and
Ross (1985b) for the spot interest rate model. Let the state variables (Z(δ)

1t , Z
(ε)
2t ) follow

dZ
(δ)
1t = κσ(σ̄ + δ νσ − Z

(δ)
1t )dt + δ

√
Z

(δ)
1t dW2t(4.53)

and
dZ

(ε)
2t = κr(r̄ + ε νr − Z

(ε)
2t )dt + ε

√
Z

(ε)
2t dW3t(4.54)

under the probability measure Q . We take a sufficiently large K2 and set r
(ε)
t =

Z
(ε)
1t (r(ε)

t < K2) , σ
(δ)
t = Z

(δ)
2t (σ(δ)

t < K2), and r
(ε)
t = K2, σ

(δ)
t = K2 otherwise.

We notice that (4.54) is the special case of (2.3) when we take µr(r
(ε)
s , s, ε) = κr(r̄+

ε νr − r
(ε)
s ) and wr(r

(ε)
s , s) =

√
r
(ε)
s , where κr, r̄, and ε are positive constants and

K2 = +∞ . Also (4.53) is also a special case of (2.2). The assumption of the CIR type
processes for two state variables could be justified by the reason that both the nominal
short term interest rates and the volatility functions take non-negative values with the
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mean-reversion properties. 7 .
In our example it is possible to give some simple formulae for the valuation problems.

The solution of the ordinary differential equation (2.8) for the spot interest rate is given
by rt = r0e

−κrt+r̄(1−e−κrt) and for the volatility process the solution of the differential
equation (2.9) is provided by σt = σ0e

−κσ t + σ̄(1− e−κσt) . Then the variance function
σ(T )2 can be calculated from

∫ T
0 σ2

sds and it is given by

σ(T )2 =
(σ̄ − σ0)

{
4σ̄eκσT

(
1 − eκσT

)
+ (σ̄ − σ0)

(
e2 κσT − 1

)}
2e2κσT κσ

+ σ̄2T .

In the standard Black-Scholes model, σ(T ) reduces to σ0

√
T , which corresponds to the

case when σ̄ = σ0 . Also we have that Y r
t = e−κrt and Y σ

t = e−κσ t . By using the
definition of Σ(r)

12 (T ) in (2.33), the integration operation gives the following expression:

Σ(r)
12 (T )

=
ρr

κr

∫ T

0

(
1− e−κr(T−u)

)(
e−κru(r0 − r̄) + r̄

)1
2
(
σ0e

−κσu + σ̄(1 − e−κσu)
)
du

=
ρr

κr

[2
√

r̄σ̄

(
(1 + 2eκrT )

√
r0 − 3 e

κrT
2

√
r0 − r̄(1 − eκrT )

)
+ σ̄

(
r̄(1 + 2eκrT ) − r0

)
ar

2eκrT κr

√
r̄

+
∫ T

0

σ̄ − σ0

eκσu

(
e−κr(T−u) − 1

) (
e−κru(r̄(eκru − 1) + r0)

)1
2 du

]
,

where we have used the notation ar defined by

ar = log

⎡
⎣ r̄(2eκrT − 1) + r0 + 2 e

κrT
2

√
r̄2(eκrT − 1) + r̄r0

(
√

r0 +
√

r̄)2

⎤
⎦ .

Also by using the definition of Σ(σ)
12 (T ) in (2.35), we can calculate the integration

explicitly as

Σ(σ)
12 (T ) =

ρσ

κσ

∫ T

0

[
σ̄
(
1 − e−κσ(T−u)

)
+

σ̄ − σ0

2
e−κσu

(
e−2κσ(T−u) − 1

)]

× [
σ0e

−κσu + σ̄
(
1− e−κσu)] 3

2 du

= ρσ
γ1 + γ2 + γ3 · aσ

60e2κσT κ2
σ

,

7 It may be important to note that the smoothness conditions in Assumption II are not satisfied in
the sense that the diffusion functions wr(r, t) and wσ(σ, t) are not differentiable at the origin and the
non-negative processes are not bounded from the above in the present case. As Section 4 of Kunitomo
and Takahashi (2001) has indicated, however, we can have the corresponding smoothed versions of
the modified CIR-type stochastic processes because there is only one point where the differentiability
breaks down. We have used the state space representation on Z

(ε)
1t and Z

(δ)
2t and truncation because

we need the integrability condition of (2.7). However, these modifications do not have any problem for
practical applications because it is possible to show that the probabilities of hitting the origin and/or
the boundary K2 are o(ε, δ) and we can ignore the possibility of explosive solutions when the initial
state variables are positive without these conditions
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where γi (i=1,2,3) and aσ are similarly defined by

γ1 = 2

√
σ̄(eκσT − 1) + σ0

eκσT

(
σ̄2(24 − 13eκσT − 116e2κσT )

+σ̄σ0(13eκσT − 48) + 24σ2
0

)
,

γ2 = −2
√

σ0

(
σ̄2(45 − 90eκσT − 60e2κσT ) + σ̄σ0(60eκσT − 20e2κσT − 75)

+σ2
0(30 − 6e2κσT )

)
,

γ3 = 15
√

σ̄
(
σ̄2(6eκσT + 4e2κσT − 3) + 6σ̄σ0(1 − eκσT ) − 3σ2

0

)
,

and

aσ = log

⎡
⎣ σ̄(2eκσT − 1) + σ0 + 2e

κσT
2

√
σ̄2(eκσT − 1) + σ̄σ0

(
√

σ̄ +
√

σ0)2

⎤
⎦ .

The standard notation in the Black-Scholes formula d1 becomes in the present case

d1 =
1

σ(T )

(
log

S0

K
+ r̄T +

1
κr

(r0 − r̄)(1 − e−κrT ) +
σ(T )2

2

)
,

and d2 = d1 − σ(T ).
Finally, we can simplify considerably the leading term in the discount factor and it is
given by

exp

(
−
∫ T

0
rt dt

)
= exp

(
−r0 − r̄

κr

(
1− e−κrT

)
− r̄ T

)
.

4.2 Numerical Accuracy

We report some results on the numerical accuracy of our formulae by using the CIR
interest rates and volatility example. We take νσ = νr = 0 and hence λr(T ) = λσ(T ) =
0 for the resulting simplicity. Since we are interested in the case when the covariances
between three state variables are not zeros, we give a set of numerical values for the
cases of ρr, ρσ = −0.5, 0.5 . Among many cases of our numerical examples we shall
report only one case. It is the case when the initial interest rate is in the downward
phase and we set r0 = 0.11, r̄ = 0.08, κr = 2.0, and ε = 0.1 . For the stochastic process
on the volatility function, it is the upward phase case and we set σ0 = 0.2, σ̄ = 0.3,

κσ = 4.0, and δ = 0.1 . Also we take that the time to maturity is assumed to be one
year (T = 1 ). For the futures price, we set S0 = 100. For the call option case, we set
K = 100 and S0 = 90, 100, 110 to incorporate moneyness of options.

Each table in this sub-section corresponds to the numerical value of the approxima-
tions up to o(ε, δ) based on the asymptotic expansions in Theorem 3.1 and Theorem
3.3 by ignoring higher order terms. For the call option case, the option value under the
original Black-Scholes model has also been given for the comparative purpose. As the
benchmark, we also provide the Monte Carlo simulation results in the first row of each
table. The number of simulated sample paths is 10, 000 and the time interval is 250 .

As the discretization method of sample paths, we have adopted the Euler-Maruyama
approximation. All results are the mean of 200 simulation trials.
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Table 1 describes the numerical accuracy of our formula for the futures price. As men-
tioned in Section 3, it should be noted that in our analysis the forward price under the
stochastic interest and the stochastic volatility differs from the futures price slightly. In
addition, the parameters of stochastic volatility have not appeared in our formula which
is in the order of o(ε, δ) . We can observe in Table 1 that our formula is numerically
very close to the simulation results. For example, when ρr = ρσ = −0.5, the pricing
bias is 0.006 yen, which is equal to only 0.005 % of the true value.

Table 2 describes the numerical example for the European call option for at-the-money
case. When κr = κσ = 0 and ε = δ = 0, the case corresponds to the original Black-
Scholes economy with constant risk-free interest rate and volatility. The Black-Scholes
value in this case BS is 13.868. We can observe in Table 2 that our option pricing
formula is very close to the simulation results. For example, when ρr = −0.5 and
ρσ = 0.5, the discrepancy between them is 0.013 yen, which is only 0.085%. Table 3
and Table 4 also give the numerical results with the same set of parameter values for
the in-the-money and the out-of-the-money cases, respectively.

4.3 Term Structure of Implied Volatilities

In our setting (2.1)-(2.3), the implied volatility σ∗(T ) is the same as the implied average
volatility σ̄(T ) when ε = δ = 0, where we denote σ̄(T )2 = (1/T )

∫ T
0 σ2

t dt . In the general
case, however, by using Theorem 3.3 the implied volatility and the implied average
volatility can be defined by the solutions of the nonlinear equation

V0

S0
= Φ[

− log k + Tr0 + T
2 σ∗(T )2

σ∗(T )
√

T
] − k exp (−Tr0)Φ[

− log k + Tr0 − T
2 σ∗(T )2

σ∗(T )
√

T
]

= [Φ(d1) − k exp (−T r̄(T )) Φ(d2)]

+ε[
Σ(r)

12 (T )√
T σ̄(T )

S0φ(d1) + λr(T )Φ(d2)k exp (−T r̄(T ))]

+δ[−Σ(σ)
12 (T )

T σ̄(T )2
d2 +

λσ(T )√
T σ̄(T )

]φ(d1) + o(ε, δ),(4.55)

where k = K/S0, d2 = d1 − √
T σ̄(T ), d1 =

[
− log k + T r̄(T ) + T 1

2 σ̄(T )2
]
/[σ̄(T )

√
T ],

and we denote the average interest rate r̄(T ) = (1/T )
∫ T
0 rtdt .

Here we have interpreted the implied volatility as the volatility calculated from the
Black-Scholes formula by using call options market prices. The implied average volatil-
ity is a reasonable volatility index if the actual price of the call options in market is
equal to the theoretical value in Definition 2.1. Furthermore, by ignoring higher order
terms the above equation can be solved with respect to σ∗(T ) and it can be written as

σ∗(T ) = H (ε,δ)(k, r̄(T ), σ̄(T ), T, Σ(r)
12 (T ), Σ(σ)

12 , λr(T ), λσ(T )) .(4.56)

Hence it is analytically possible to investigate the various shapes on the implied volatil-
ity σ∗(T ) or the implied average volatility as the functions of the variables k and T

including the well-known phenomena of volatility smile.

17



5 Discussion

5.1 Risk Premium, Complete Market, and Near Completeness

We have interpreted the stochastic processes in (2.1)-(2.4) under the measure Q, which
can be different from the probability measure P governing the observable stochastic
processes. When we consider the measure P for the observable underlying asset price
and the bond prices with the spot interest rate, we could write the stochastic differential
equation under P as

r(ε)
s = r0 +

∫ s

0
µ∗

r(r
(ε)
u , u)du + ε

∫ s

0
wr(r(ε)

u , u)dB∗
3u ,(5.57)

where µ∗
r(·, u) is the drift function, wr(·, u) is the diffusion function, and B∗

3u(u) is the
Brownian motion for the spot interest rate under P . Also the stochastic differential
equation of the volatility function for the underlying asset could be written as

σ
(δ)
t = σ0 +

∫ t

0
µ∗

σ(σ(δ)
u , u)du + δ

∫ t

0
wσ(σ(δ)

u , u)[c22dB∗
2u + c23dB∗

3u] ,(5.58)

where µ∗
σ(·, u) is the drift function, wσ(·, u) is the diffusion function, B∗

2u is the Brownian
motion for the volatility function which is independent of B∗

3u under P , and c2i (i = 2, 3)
are constants with the normalization condition EP [c22B

∗
2t+c23B

∗
3t]

2 = t. The stochastic
differential equation for the underlying asset price under P could be written as

S
(δ)
t = S0 +

∫ t

0
µ∗

S(S(δ)
u , u)S(δ)

u du(5.59)

+
∫ t

0
σ(δ)

u S(δ)
u [c11dB∗

1u + c12dB∗
2u + c13dB∗

3u] ,

where µ∗
S(·, u) is the drift function, B∗

1u is the Brownian motion for the security market
under P, which is independent of B∗

iu (i = 2, 3), and c1i (i = 1, 2, 3) are constants with
the normalization condition EP [c11B

∗
1t + c12B

∗
2t + c13B

∗
3t]

2 = t. We note that the asset
price S

(δ)
t has only one parameter δ under the probability P in this setting.

In financial economics it has been often considered when there exist risk pre-
mium functionals associated with the Brownian motions. In this section we denote
λ

(ε,δ)
i (u) as the risk premium processes for the Brownian motions B∗

iu (i = 1, 2, 3)
under the probability measure P. For the simplicity of our discussion on the risk pre-
mium functionals we first consider the single factor model in the bond market and let
P (ε)(t, T ) (= P (ε)(r(ε)

t , t, T )) be the discount bond price with the maturity period T

satisfying

dP (ε)(t, T ) = µ
(ε)
P (t, T )P (ε)(t, T )dt + ν(ε)(t, T )P (ε)(t, T )dB∗

3t(5.60)

where µ
(ε)
P (t, T ) and ν(ε)(t, T ) are the drift term and the volatility function of the bond

price, respectively. By using the standard argument of the no-arbitrage condition the
risk premium functional λ

(ε)
3 (t) can be determined by

ν(ε)(t, T )λ(ε,δ)
3 (t) = µ

(ε)
P (t, T )− r

(ε)
t ,
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provided that ν(ε)(t, T ) > 0 for any ε > 0 and the consistency condition limε↓0 ν(ε)(t, T ) =
0. For stochastic volatility let us assume that there exists a traded contingent claim
whose price can be written as G

(ε,δ)
t (= G(S(δ)

t , σ(δ), r
(ε)
t , t)) at t. Then this price process

can be re-written as

dG
(ε,δ)
t = µ

(ε,δ)
G (t)G(ε,δ)

t dt(5.61)

+ σ
(ε,δ)
G (t)G(ε,δ)

t [c∗11(t)dB∗
1t + c∗12(t)dB∗

2t + c∗13(t)dB∗
3t(t)],

where µ
(ε,δ)
G (t) and σ

(ε)
G (t) are the drift term and the volatility function of the contingent

claim price. Together with the stochastic process for S
(δ)
t , again by using the standard

arguments of the no-arbitrage conditions, the risk premium functional λ
(ε,δ)
i (t) (i =

1, 2, 3) can be determined by

⎛
⎜⎝ c11σ

(δ)
t c12σ

(δ)
t c13σ

(δ)
t

c∗11(t)σ
(ε,δ)
G (t) c∗12(t)σ

(ε,δ)
G (t) c∗13(t)σ

(ε,δ)
G (t)

0 0 ν(ε)(t, T )

⎞
⎟⎠
⎛
⎜⎜⎝

λ
(ε,δ)
1t

λ
(ε,δ)
2t

λ
(ε,δ)
3t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

µ
(δ)
S (t) − r

(ε)
t

µ
(ε,δ)
G (t)− r

(ε)
t

µ
(ε)
P (t, T )− r

(ε)
t

⎞
⎟⎟⎠ .

(5.62)
Then the risk premium functionals can be uniquely given by solving the above equations
if we have the non-degeneracy conditions ν(ε)(t, T ) > 0, σ

(ε,δ)
G (t) > 0, σ

(δ)
t > 0 and

c11c12
∗(t) − c∗11(t)c12 > 0 , c11 > 0 .(5.63)

for 0 < t ≤ T. Our method here is a kind of spanning problem and market completion
by financial contingent claims and this problem has been systematically investigated
by Romano and Touzi (1997) in a slightly different formulation.

Furthermore, in order to use the change of measures procedure, we need to assume
the Novikov condition for the transformation of measures

EP [exp(
1
2

∫ T

0

3∑
i=1

(
(λ(ε,δ)

i )2(s)ds
)
] < +∞ (t > 0) .(5.64)

Then we can take the Brownian Motions under the martingale measure Q, which is
equivalent to the original measure P for (5.57)-(5.59) by using the Maruyama-Girsanov
transformation with

Bit = B∗
it +

∫ t

0
λ

(ε,δ)
i (s)ds (i = 1, 2, 3) .(5.65)

We note that the expectation in (5.64) is taken with respect to the probability measure
P . In this formulation of the risk premium functionals they are dependent on the
underlying stochastic processes in a complicated way in the general case. Because
stochastic volatility and the stochastic interest rate become non-stochastic in the limit,
we may assume the condition that the risk premium functionals are locally deterministic
in the small disturbance asymptotics sense.

Assumption III : The risk premium functionals λ
(ε,δ)
i (t) (i = 1, 2, 3) are bounded

and satisfy (5.63)-(5.64) and as ε ↓ 0 and δ ↓ 0,

λ
(ε,δ)
i (t) = λi(t) + Op(ε, δ) (i = 2, 3) ,(5.66)
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where λi(t) (i = 2, 3) are the deterministic functions of time.

This is a restrictive assumption and it is possible to relax this condition, but the fol-
lowing analysis will become considerably more complex. By redefining W1t = c11B1t +
c12B2t + c13B3t, W2t = c22B2t + c23B3t, and W3t = B3t such that we have the corre-
lation structure of (2.4) with cij (i ≤ j), we have the security price process and the
interest rate processes with (2.1)-(2.4). The drift condition in the form of (2.1) is the
standard formulation under the assumption of the existence of a locally riskless money
market. By ignoring the higher order terms, under Assumption III we can write the
drift function of r

(ε)
t as

µr(r(ε)
u , u, ε) = µ∗

r(r
(ε)
u , u)− εwr(r(ε)

u , u)λ3(u) ,

and in the present case Ar(t) of (2.18) should be the solution of the stochastic integral
equation,

Ar(t) =
∫ t

0
∂µ∗

r(rs, s)Ar(s)ds +
∫ t

0
wr(rs, s)[dW3s − λ3(s)ds] .(5.67)

Then it can be solved as

Ar(t) =
∫ t

0
Y r

t (Y r
s )−1wr(rs, s)[dW3s − λ3(s)ds] .(5.68)

Similarly, we can write the drift function of σ
(δ)
t as

µσ(σ(δ)
u , u, δ) = µ∗

σ(σ(δ)
u , u)− δwσ(σ(δ)

u , u)[c22λ2(u) + c23λ3(u)] ,

and we have the corresponding equation for (2.23) as

Aσ(t) =
∫ t

0
Y σ

t (Y σ
s )−1wσ(σs, s)[dW2s − (c22λ2(s) + c23λ3(s))ds] .(5.69)

Also in the present case we have

λr(T ) = (−1)
∫ T

0

(∫ T

u
Y r

s ds

)
(Y r

u )−1wr(ru, u)λ3(u)du ,(5.70)

and

λσ(T ) = (−1)
∫ T

0

(∫ T

u
σsY

σ
s ds

)
(Y σ

u )−1wσ(σu, u)[c22λ2(u) + c23λ3(u)]du .(5.71)

In this way we can obtain the corresponding expressions in Sections 2 and 3 under the
probability measure Q. The correlation coefficients among the underlying Brownian
motions are invariant with respect to the change of measures that we have discussed.
In order to use our derived formulae in practice, however, we have to estimate the
appeared values of the parameters. We can ignore the extra terms discussed in this
subsection if the risk premum functions are small and in the order of op(1).

We should mention that for the underlying asset prices and their derivatives there
have been different approaches to determine the prices of contingent claims at actual
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financial markets, i.e., the (economic) general equilibrium prices, which have been ex-
tensively investigated. (See Cox, Ingersoll, Ross (1985a,b) for instance.) In the general
equilibrium framework, the risk functional λ

(ε,δ)
i (t) (i = 1, 2, 3) in (5.62) should be de-

termined as the function of individual preferences. Then the resulting relation between
the drift functions of the underlying asset prices and the risk premium functionals could
be in the form of (5.62).

When ε ↓ 0 and δ ↓ 0, the limiting case is the complete market for the underlying
asset S

(δ)
t and its derivatives in any case because limε→0 r

(ε)
t = rt and limδ→0 σ

(δ)
t = σt in

the sense of probability. This is the case regardless whether there exists any additional
bond markets or contingent claim markets depending on the interest rates and volatility
of underlying asset price. However, when δ > 0, the market is incomplete in the
case when there does not exist an additional financial market on the volatility of the
underlying asset. Thus, in this case, the security market with the price processes
developed in Section 2 is incomplete, but not far from the complete market as the
limiting case. We can call the situation which we have been considering the near
complete market in this respect.

5.2 The HJM Case

In our formulation of the spot interest rate process, we have assumed (2.3) or (5.57),
which is a Markovian-type continuous process. There has been another type of term
structure of interest rate processes originally developed by Heath, Jarrow, and Morton
(1992). In the HJM framework the instantaneous spot interest rate is not necessarily
a Markovian continuous process.

Let also the price of discount bond P (ε)(s, t) be continuously differentiable with
respect to t and P (ε)(s, t) > 0 for 0 ≤ s ≤ t ≤ T and 0 < ε ≤ 1 . The instantaneous
forward rate at s for future date t (0 ≤ s ≤ t ≤ T ) is defined by

f (ε)(s, t) = −∂ log P (ε)(s, t)
∂t

.(5.72)

In the HJM term structure model of interest rates we assume that the bond market
is complete and under the equivalent martingale measure, say Q∗, a family of forward
rate processes f (ε)(s, t) follow the stochastic integral equations

f (ε)(s, t) = f(0, t) + ε2
∫ s

0

[
n∑

i=1

ωf,i(f (ε)(v, t), v, t)
∫ t

v
ωf,i(f (ε)(v, y), v, y)dy

]
dv

+ ε

∫ s

0

n∑
i=1

ωf,i(f (ε)(v, t), v, t)dW3,i(v) ,(5.73)

where f(0, t) (= f (0)(0, t)) are assumed to be observable and the non-random ini-
tial forward rates, W3,i(v) (i = 1, · · · , n) are n independent Brownian motions, and
ωf,i(f (ε)(v, t), v, t) (i = 1, · · · , n) are the diffusion functions. This formulation has been
adopted by Kunitomo and Takahashi (1995, 2001), who have investigated the valu-
ation problems of interest rate-based contingent claims in detail. When f (ε)(s, t) is
continuous at s = t for 0 ≤ s ≤ t ≤ T, the spot interest rate at t can be defined by

r(ε)(s) = lim
t↓s

f (ε)(s, t) .(5.74)
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Kunitomo and Takahashi (1995, 1998, 2001) have derived the asymptotic expansion
of the discount factor when ε ↓ 0 under a set of assumptions on the boundedness and
smoothness of volatility functions. The equation (3.21) of Kunitomo and Takahashi
(2001) implies

e−
∫ T

0
r(ε)(s)ds = P (0, T )[1 − ε

∫ T

0
A(s, s)ds] + op(ε) ,(5.75)

where

P (0, T ) = exp[−
∫ T

0
f(0, u)du] ,(5.76)

and ∫ T

0
A(t, t)dt =

∫ T

0

n∑
i=1

∫ T

v
ωf,i(f (0)(v, t), v, t)dt dW3,i(v) .(5.77)

Then it is straightforward to modify our analysis developed in Sections 2 and 3. The
essential point is to replace the formula for Σ(r)

12 by

Σ(r)
12 (T ) =

∫ T

0
σv

[
n∑

i=1

ρf,i

∫ T

v
ωf,i(f (0)(v, s), v, s)ds

]
dv ,(5.78)

where ρf,i are the correlation coefficients between dW1t and dW3,i(t) (i = 1, · · · , n).
Then it is possible to obtain the corresponding results on the futures, forward, and
options prices to Theorem 3.1, Theorem 3.2, Theorem 3.3, and Theorem 3.4 when the
forward interest rate processes follow the stochastic integral equation given by (5.73)
and the security returns exhibit stochastic volatility.

5.3 Concluding Remarks

We have investigated the value of contingent claims when both the interest rate and
volatility are stochastic. We have found that the European options value can be de-
composed into the original Black-Scholes option price and adjustment terms, which
reflect the effects of the randomness of interest rates and volatility in the underlying
stochastic processes. Similarly, the futures price can be decomposed into the futures
price under constant interest rate and some adjustment terms. We also have illustrated
numerical examples and examined the accuracy of our formulae. Since our formulae
are relatively simple and quite accurate, they shall be useful for practical applications.

The framework we have developed includes many situations as special cases and we
have the standard Black-Scholes economy as the limiting case as both ε ↓ 0 and δ ↓ 0.
This makes it possible to examine the effects of stochastic volatility and stochastic
interest rate in a unified way. As we have illustrated by examples of futures and
options in Section 3, our method can be also applicable to analyze other European-
type contingent claims.

Since the asymptotic expansion method we have developed has a solid mathematical
basis called the Malliavin-Watanabe Calculus or the Watanabe-Yoshida theory on the
Malliavin Calculus in stochastic analysis, the formulae in this paper are not ad-hoc
approximations and they have a rigorous mathematical basis. Also they are numerically
accurate even for practical applications as we have illustrated in Section 4. In addition
to these aspects we should mention that we have derived the asymptotic expansions for
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the futures price and options price in the order of op(ε, δ), but it is certainly possible
to obtain the approximations up to any higher order terms by using the asymptotic
expansion approach. However, the calculations we need will become more demanding
than we have derived in Section 2.

Finally, we should mention that the theoretical results reported in this paper can
be utilized in empirical studies of actual devivatives markets. Kim (2002), for instance,
has shown some preliminary results, but they are quite involved and the full details
shall be reported on another occasion.

6 Mathematical Appendix

In this appendix we give the detailed proofs of Lemmas and Theorems stated in the
previous sections.

6.1 Proof of Lemma 2.1

[i] Let X
(ε,δ)
t = log(S (ε,δ)

t ) and Xt = log(St) . By using (2.1) and (2.25), we represent
the difference of two stochastic processes as

X
(ε,δ)
t − Xt(6.79)

=
∫ t

0
[(r(ε)

s − rs) − 1
2
(σ(δ)2

s − σ2
s)]ds +

∫ t

0
[σ(δ)

s − σsSs]dW1s

=
∫ t

0
{εA(ε)

r (s) − 1
2
[(σs + δA(δ)

σ (s))2 − σ2
s)}ds +

∫ t

0
[δA(δ)

σ (s)]dW1s .

Then by using Assumption II, for any 0 ≤ t ≤ T there exists a positive constant M1

such that

|X (ε,δ)
t − Xt|(6.80)

≤ M1 max(ε, δ)
∫ t

0
|A(ε)

r (s) + A(δ)
σ (s) + A(δ)2

σ (s)|ds + δ|
∫ t

0
A(δ)

σ (s)dW1s| ,

where A
(ε)
r (t) is given by (2.12) and A

(δ)
σ (t)(= [σ(δ)

t − σt]/δ), respectively. Hence there
exist a positive constant M2 such that

E[ sup
0≤s≤t

|X (ε,δ)
s − Xs|2] ≤ ε2M2 .(6.81)

By using the Borel-Cantelli Lemma and the standard argument in stochastic analysis
(see Chapter IV of Ikeda and Watanabe (1989)), we have the first part of our results
under Assumptions I and II as ε ↓ 0.

[ii] We denote 3 × 1 vector h = (hi) ∈ H be the square-integrable continuous
functions in [0, T ]. By differentiating (2.3) and (2.2) in the direction of h, we have the
stochastic differential equations

Dhσ
(δ)
t =

∫ t

0
∂µσ(σ(δ)

s , s, δ)Dhσ
(δ)
s ds(6.82)

+δ

∫ t

0
∂wσ(σ(δ)

s , s)Dhσ(δ)
s dW2s + δ

∫ t

0
wσ(σ(δ)

s , s)dh2s ,
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and

Dhr
(ε)
t =

∫ t

0
∂µr(r(ε)

s , s, ε)Dhr
(ε)
s ds(6.83)

+ε

∫ t

0
∂wr(r(ε)

s , s)Dhr(ε)
s dW3s + ε

∫ t

0
wr(r(ε)

s , s)dh3s .

Then we can represent the solution of these equations as

Dhσ
(δ)
t =

∫ t

0
Y (δ)

σ (t)Y (δ)
σ (s)−1δ wσ(σ(δ)

s , s) ˙h2sds ,(6.84)

and
Dhr

(ε)
t =

∫ t

0
Y (ε)

r (t)Y (ε)
r (s)−1ε wr(r(ε)

s , s) ˙h3sds ,(6.85)

where Y
(δ)
σ (t) and Y

(ε)
r (t) are the solutions of

Y (δ)
σ (t) =

∫ t

0
∂µσ(σ(δ)

s , s, δ)Y (δ)
σ (s)ds + δ

∫ t

0
∂wσ(σ(δ)

s , s)Y (δ)
σ (s)dW2s(6.86)

and
Y (ε)

r (t) =
∫ t

0
∂µr(r(ε)

s , s, ε)Y (ε)
r (s)ds + ε

∫ t

0
∂wr(r(ε)

s , s)Y (ε)
r (s)dW3s .(6.87)

Also by differentiating (2.1) with respect to h, we have the stochastic differential equa-
tion as

DhS
(ε,δ)
t =

∫ t

0
r(ε)
s DhS(ε,δ)

s ds +
∫ t

0
σ(δ)

s DhS(ε,δ)
s dW1s +

∫ t

0

3∑
i=1

g
(ε,δ)
i (s)ds ,(6.88)

where we denote g
(ε,δ)
1 (s) = σ

(δ)
s S

(ε,δ)
s

˙h1s, g
(ε,δ)
2 (s) = (Dhσ

(δ)
s )S(ε,δ)

s , and g
(ε,δ)
3 (s) =

(Dhr
(ε)
s )S(ε,δ)

s .
By applying the Fubini-type theorem to (6.82) and (6.83), we can further represent∫ t

0
g

(ε,δ)
2 (s)ds =

∫ t

0
δ

∫ t

s
Y (δ)

σ (u)S(ε,δ)
u duY (δ)

σ (s)−1wσ(σ(δ)
s , s, δ) ˙h2sds ,(6.89)

and ∫ t

0
g

(ε,δ)
3 (s)ds =

∫ t

0
ε

∫ t

s
Y (ε)

r (u)S(ε,δ)
u duY (ε)

r (s)−1wr(r(ε)
s , s, ε) ˙h3sds ,(6.90)

respectively. Then we can represent the H-derivative for the solution of security price
equation as

DhS
(ε,δ)
t =

∫ t

0
Y

(ε,δ)
S (t)Y (ε,δ)

S (s)−1[
3∑

i=1

g
(ε,δ)
i (s)]ds ,(6.91)

where Y
(ε,δ)
S (t) is the solution of the stochastic differential equation

dY
(ε,δ)
S (t) = r(ε)

s Y
(ε,δ)
S (t)dt + σ(ε,δ)

s Y
(ε,δ)
S (t)dW1t .(6.92)

Hence we can represent the Malliavin-covariance of S
(ε,δ)
t as

σMC(S(ε,δ)
t ) =

3∑
i=1

∫ t

0
Y

(ε,δ)
S (t)2Y (ε,δ)

S (s)−2(g(ε,δ)
i (s))2ds .(6.93)
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We notice that as ε ↓ 0 and δ ↓ 0, σ
(δ)
t → σt, r

(ε)
t → rt, and Y

(ε,δ)
S (t) → St by using

similar but tedious standard arguments. Then we have the convergence results such
that as ε ↓ 0 and δ ↓ 0 g

(ε,δ)
1 (t) → Stσt

˙h1s and g
(ε,δ)
i (t) → 0 (i = 2, 3). Hence we have

the desired result. (Q.E.D.)

6.2 Proof of Lemma 2.2

By using the stochastic expansions, we shall focus on the stochastic approximation
based on X1t as the leading term with respect to ε and δ in (2.29). By the Fubini-type
theorem 8 for stochastic integrals, we notice that∫ t

0
Ar(s)ds =

∫ t

0

(∫ t

u
Y r

s ds

)
(Y r

u )−1[wr(ru, u)dW3u + ∂εµr(ru, u, 0)du] ,∫ t

0
σsAσ(s)ds =

∫ t

0

(∫ t

u
σsY

σ
s ds

)
(Y σ

u )−1[wσ(σu, u)dW2u + ∂δµσ(σu, u, 0)du] .

Then by using the Gaussian property of Wt, we have the representation dW2t =
ρσdW1t + dW ∗

2t and dW3t = ρrdW1t + dW ∗
3t , where we can construct the random

variables W ∗
2t and W ∗

3t being independent of W1t under Q. The conditional expectation
given X1t as the leading term is determined by

EQ
[∫ t

0
Ar(s)ds

∣∣∣ ∫ t

0
σsdW1s = x

]
=

Σ(r)
12 (t)

σ(t)2
x + λr(t) ,(6.94)

where we denote
Σ(r)

12 (t) = Cov

(∫ t

0
Ar(s)ds, X1t

)
.(6.95)

Then from (2.21) we confirm the relations (2.33) and (2.34). By the same token, the
second conditional expectation given X1t as the leading term is given by

EQ
[∫ t

0
σsAσ(s)ds

∣∣∣ ∫ t

0
σsdW1s = x

]
=

Σ(σ)
12 (t)
σ(t)2

x + λσ(t) ,(6.96)

where
Σ(σ)

12 (t) = Cov

(∫ t

0
σsAσ(s)ds, X1t

)
.(6.97)

Also by using the independent Gaussian random variables, we have the expression that
the third conditional expectation given X1t is determined by

EQ
[∫ t

0
Aσ(s)dW1s

∣∣∣ ∫ t

0
σsdW1s = x

]
(6.98)

= EQ
[∫ t

0

∫ s

0
Y σ

s (Y σ
u )−1wσ(σu, u)dW2udW1s

+
∫ t

0

∫ s

0
Y σ

s (Y σ
u )−1 ∂δµσ(σu, u, 0)du dW1s

∣∣∣ ∫ t

0
σsdW1s = x

]

= Σ(σ)
12 (t)

[
x2

σ(t)4
− 1

σ(t)2

]
+

λσ(t)
σ(t)2

x .

8 We can use a simplified (but slightly extended in a sense) vesrion of Lemma 4.1 of Ikeda and
Watanabe (1989) for the present purpose.
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We note that the second equation in (6.98) can be obtained by applying Lemma 6.1 in
Kunitomo and Takahashi (2001) ( or Lemma 6.4 of Kunitomo and Takahashi (2003b) for
the details ). From the above relatively tedious expositions, we sum up the expressions
of three random variables as∫ t

0
Ar(s)ds =

Σ(r)
12 (t)

σ2(t)
X1t + λr(t) + z1t ,(6.99)

∫ t

0
σsAσ(s)ds =

Σ(σ)
12 (t)
σ2(t)

X1t + λσ(t) + z2t ,(6.100)

∫ t

0
Aσ(s)dW1s = Σ(σ)

12 (t)

[
X2

1t

σ(t)4
− 1

σ(t)2

]
+

λσ(t)
σ(t)2

X1t + z3t ,(6.101)

where zit (i = 1, 2, 3) are the random variables being uncorrelated with X1t and we
have the relations EQ

[
zit

∣∣∣ ∫ t
0 σsdW1s = x

]
= 0 (i = 1, 2, 3) and EQ[z2

it] < +∞ by our
constructions.

By substituting (6.99)-(6.101) into (2.29), we have the result. We need the order
calculations and their justifications as we have illustrated for r

(ε)
t . It is straightfor-

ward to do them as we have indicated at the end of Section 2 and we have omitted
them. (Q.E.D.)

6.3 Proof of Theorem 3.3

Our derivation of the formula in Theorem 3.3 consists of three steps. The mathematical
justifications of formal calculations are given.
[i] Since the payoff function in the valuation problem of option contracts is not differ-
entiable in the usual sense, we need to evaluate some expectations with the indicator
function. First we prepare a useful lemma.

Lemma 6.1 : Under the assumptions, the probability of the event {S(ε,δ)
T − K ≥ 0}

can be expressed as

Pr
(
S

(ε,δ)
T − K ≥ 0

)
(6.102)

= Pr (X1T ≥ C0 + εCr
12 + δ Cσ

12 − ε z1T − δ(z3T − z2T )) + R8 ,

where R8 is the remainder terms of the order o(ε, δ), Cr
12 = −C0Σ

(r)
12 (T )/σ2(T )−λr(T ),

and

C0 = log
K

S0
−
∫ T

0

(
rs − σ2

s

2

)
ds ,(6.103)

Cσ
12 =

Σ(σ)
12 (T )
σ(T )2

(1 + C0) − Σ(σ)
12 (T )
σ(T )4

C2
0 − λσ(T )[

C0

σ(T )2
− 1] .(6.104)

Proof of Lemma 6.1 :
By using Lemma 2.2 for the event {S(ε,δ)

T −K ≥ 0}, the probability we need to evaluate
is given by

Pr

{
X1T

[
1 + ε

Σ(r)
12 (T )

σ(T )2
− δ(

Σ(σ)
12 (T )

σ(T )2
− λr(T )

σ(T )2
) + δ

Σ(σ)
12 (T )
σ(T )4

X1T

]
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≥ log
K

S0
−
∫ T

0

(
rs − σ2

s

2

)
ds − ελr(T ) + δ(

Σ(σ)
12 (T )
σ(T )2

+ λσ(T )) − εz1T − δ(z3T − z2T ) + R5

}

(6.105)

where R5 is the remainder term of the order op(ε, δ) in (2.31).
When Σ(σ)

12 (T ) �= 0 9 , we can evaluate

Pr

(
1 + ε

Σ(r)
12 (T )

σ(T )2
− δ(

Σ(σ)
12 (T )
σ(T )2

− λr(T )
σ(T )2

) + δ
Σ(σ)

12 (T )
σ(T )4

X1T < 0

)
(6.106)

≤ Pr

(
δ|Σ

(σ)
12 (T )

σ(T )4
X1T | > |1 + ε

Σ(r)
12 (T )

σ(T )2
− δ(

Σ(σ)
12 (T )
σ(T )2

− λr(T )
σ(T )2

)|
)

+op(δ2)

= O(δ2)

by using the Gaussianity of the random variable X1T and the Tchebichev inequality.
We note that when Σ(σ)

12 (T ) = 0 we can take ε and δ sufficiently small such that the
first parenthesis of left-hand side of (6.105) is positive. Hence by using (6.105) we can
evaluate the conditional probability as

Pr

(
X1T ≥

[
C0 − ελr(T ) + δ(

Σ(σ)
12 (T )

σ(T )2
+ λσ(T )) − εz1T − δ(z3T − z2T )

]
(6.107)

×
[
1 + ε

Σ(r)
12 (T )

σ(T )2
− δ(

Σ(σ)
12 (T )
σ(T )2

− λr(T )
σ(T )2

) + δ
Σ(σ)

12 (T )
σ(T )4

X1T

]−1)

= Pr

(
X1T ≥ C0 + εCr

12 + δ Cσ
12 − ε z1T − δ(z3T − z2T ) + R9

)
,

where we have used the notations in the present Lemma and the remainder term R9.
Finally we notice that the remainder term R9 is R5 times some polynomial function
of X1T which is the Gaussian random variable. Because we have E[R2

5] < ∞ and
R5 = op(ε, δ), we have (6.102). (Q.E.D.)

[ii] The next step is to evaluate the expectation operators. We define
Λ1 = EQ[Z0I(S(ε,δ)

T − K)], Λδ
2 = EQ[Zδ

1I(S(ε,δ)
T − K)], and Λε

2 = EQ[Zε
1I(S(ε,δ)

T − K)],
where I( · ) is the indicator function of [0, +∞) . By recalling the definition of Z

(ε,δ)
T

and using the inequality (6.102), Λ1 is represented as

Λ1 = EQ

[∫
x≥C0+εCr

12+δCσ
12−εz1T −δ(z3T −z2T )

S0 exp
(
x − 1

2
σ(T )2

)
φσ(T )2(x)dx

]

−K exp

(
−
∫ T

0
rtdt

)
EQ

[∫
x≥C0+εCr

12+δCσ
12−εz1T −δ(z3T −z2T )

φσ(T )2(x)dx

]
,(6.108)

where φσ(T )2(x) is the density function of the normal random variable X1T = x with
zero mean and the variance σ(T )2. By transforming the random variable from x to

9 We note that Σ
(σ)
12 (T ) has been defined by (2.35), which is a deterministic function of several

quantities involved. It is one of convenient consequences of the asymptotic expansion approach we
have adopted in this paper.
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y1 = [x − σ(T )2]/σ(T ) and y2 = x/σ(T ), we rewrite

Λ1 = S0EQ

[∫
y1≥ 1

σ(T )
[C0−σ(T )2+εCr

12+δCσ
12−εz1T −δ(z3T −z2T )]

φ(y1)dy1

]

−K

[
exp

(
−
∫ T

0
rtdt

)]
EQ

[∫
y2≥ 1

σ(T )
[C0+εCr

12+δCσ
12−εz1T −δ(z3T −z2T )]

φ(y2)dy2

]
.(6.109)

By construction the random variables ziT (i = 1, 2, 3) are uncorrelated to the random
variable X1T so that they are uncorrelated with y1 and y2. Then by taking the expec-
tations with respect to y1 and y2 and using the distribution function of the standard
normal random variables Φ[·], we have

Λ1 =

[
S0Φ

(
σ(T )− C0

σ(T )

)
− K exp

(
−
∫ T

0
rtdt

)
Φ
(
− C0

σ(T )

)]

+

[
S0φ

(
σ(T )− C0

σ(T )

)
− K exp

(
−
∫ T

0
rtdt

)
φ

(
− C0

σ(T )

)]
EQ [C(ε, δ)] ,

where C(ε, δ) = [−εCr
12 − δCσ

12 + εz1T + δ(z3T − z2T )]/σ(T ). By using the notation
d1 = σ(T )− C0/σ(T ),d2 = d1 − σ(T ), and rearranging each terms, we have

Λ1 =

[
S0Φ(d1)− K exp

(
−
∫ T

0
rtdt

)
Φ(d2)

]

+

[
S0φ(d1) − K exp

(
−
∫ T

0
rtdt

)
φ(d2)

]
×EQ [C(ε, δ)] .(6.110)

Next, we try to evaluate the second term Λδ
2 . By recalling the definition of Zδ

1 and
using the inequality (6.103), it can be written by

Λδ
2 = EQ

{∫
x≥C0+εCr

12+δCσ
12−εz1T −δ(z3T −z2T )

S0 exp

(
x − σ(T )2

2

)

×
[
Σ(σ)

12 (T )
σ(T )2

(
x2

σ2(T )
− x − 1

)
+ λσ(T )(

x

σ(T )2
− 1)

]
φσ(T )2(x)dx

}
.(6.111)

By tranforming from x to y1 = [x−σ(T )2]/σ(T ) and using the Gaussian property such
as ∂φ(y1)/∂y1 = −y1φ(y1) and ∂(y1φ(y1))/∂y1 = (1 − y2

1)φ(y1), we can express Λδ
2 as

Λδ
2 = EQ

{∫
y1≥ 1

σ(T )
[C0−σ(T )2+εCr

12+δCσ
12−εz1T −δ(z3T −z2T )]

S0

×
[
Σ(σ)

12 (T )
σ(T )

y1 +
Σ(σ)

12 (T )
σ(T )2

(y2
1 − 1) +

λσ(T )
σ(T )

y1

]
φ(y1)dy1

}

= S0EQ

{
(
Σ(σ)

12 (T )
σ(T )

+
λσ(T )
σ(T )

)φ(y∗) − Σ(σ)
12 (T )
σ(T )2

y∗φ(y∗)

}
,(6.112)

where
y∗ =

1
σ(T )

[−C0 + σ(T )2 − εCr
12 − δCσ

12 + εz1T + δ(z3T − z2T )] .
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Then by expanding the Gaussian density function and using the notation d1 = σ(T )−
C0

σ(T ) , we have

Λδ
2 = S0EQ

{
Σ(σ)

12 (T )
σ(T )

[
φ(d1) + φ

′
(d1)C(ε) + φ

′
(d1)C(δ)

]

−Σ(σ)
12 (T )
σ(T )2

[
y∗[φ(d1) + φ

′
(d1)C(ε) + φ

′
(d1)C(δ)]

]}
,(6.113)

where C(ε) = [−ε(Cr
12 − z1T )]/σ(T ) and C(δ) = [−δ(Cσ

12 − (z3T − z2T ))]/σ(T ) . By
ignoring all the terms involving ε and δ because we are concerned with the order of
o(ε, δ), we have

Λδ
2 = S0

{
[
Σ(σ)

12 (T )
σ(T )

+
λσ(T )
σ(T )

]φ(d1)− Σ(σ)
12 (T )
σ(T )2

d1φ(d1)

}
+ R10 ,(6.114)

where R10 is the remainder term of the order o(ε, δ) .

Now we shall evaluate the term Λε
2 . By using the definition of Z

(ε,δ)
1 and the inequality

(6.102), we can express Λε
2 as

Λε
2 = K exp

(
−
∫ T

0
rtdt

)

×EQ

{∫
x≥C0+εCr

12+δCσ
12−εz1T −δ(z3T −z2T )

[
Σ(r)

12 (T )
Σ11(T )

x + λr(T )]φσ(T )2(x)dx

}
.

By transforming y2 = x/σ(T ) and using the Gaussian property, we can obtain

Λε
2 = K exp

(
−
∫ T

0
rtdt

)
{Σ(r)

12 (T )
Σ11(T )

σ(T )EQ[φ(y∗)] + λr(T )EQ[Φ(y∗)]} ,

where y∗ = [−C0 − εCr
12 − δCδ

12 + εz1T + δ(z3T − z2T )]/σ(T ). By using the notation
d2 = −C0/σ(T ), we have

Λε
2 = K exp

(
−
∫ T

0
rtdt

)[
Σ(r)

12 (T )
σ(T )2

σ(T )φ(d2) + λr(T )Φ(d2)

]
+ R11,(6.115)

where R11 is the remaining term of the order o(ε, δ) .

[iii] : As the third step, by taking the conditional expectations and ignoring higher
order terms, the first term Λ1 is given by

Λ1 =

[
S0Φ(d1)− K exp

(
−
∫ T

0
rtdt

)
Φ(d2)

]

+

[
S0φ(d1) − K exp

(
−
∫ T

0
rtdt

)
φ(d2)

]
[−ε

Cr
12

σ(T )
− δ

Cσ
12

σ(T )
] ,(6.116)

where d2 = −C0/σ(T ) = d1 − σ(T ) , and Φ(·) and φ(·) are the distribution function
and the density function of the standard normal random variable, respectively. Then
by collecting three terms and ignoring higher order terms we have the expression as

Λ1 + δΛδ
2 + εΛε

2 =

[
S0Φ(d1) − K exp

(
−
∫ T

0
rtdt

)
Φ(d2)

]
+ εΨε + δΨδ,(6.117)
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where

Ψε = − Cr
12

σ(T )

[
S0φ(d1) − K exp

(
−
∫ T

0
rtdt

)
φ(d2)

]

+K exp

(
−
∫ T

0
rtdt

)
[
Σ(r)

12 (T )
σ(T )

φ(d2) + λr(T )Φ(d2)]

and

Ψδ = − Cσ
12

σ(T )

[
S0φ(d1) − K exp

(
−
∫ T

0
rtdt

)
φ(d2)

]

+S0

{
[
Σ(σ)

12 (T )
σ(T )

+
λσ(T )
σ(T )2

]φ(d1) − Σ(σ)
12 (T )
σ(T )2

d1φ(d1)

}
.

After simple manipulations of three terms, we can derive the formula in Theorem 3.3.
For the sake of completeness, we give a key lemma which makes our final results in
compact forms. The proof is a result of direct calculations.

Lemma 6.2 : With the notations we have used in this section and Section 3 we have
the equality

S0φ(d1)− K exp

(
−
∫ T

0
rtdt

)
φ(d2) = 0 .(6.118)
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Table 1: Futures Price under Downward Stochastic Interest Rate and Upward Volatility
We set r0 = 0.11 > r̄ = 0.08, κr = 2.0, ε = 0.1 for the interest rate process and σ0 = 0.20 < σ̄ = 0.30,

κσ = 4.0, δ = 0.1 for the volatility process. Furthermore, we assume S0 = 100 and T = 1.0. F0 denotes

the futures price at initial time and f0 represents the forward price and F0 = FC + [FD − FC] + ε Fr +

o(ε, δ) = f0 + ε Fr + o(ε, δ), where FC is the futures price under constant interest rate and volatility.

FD is the futures price under the deterministic interest rate and it is equal to f0. εFr captures the

effect of randomness of the interest rate and it is equal to F0 − f0. Simul. represents the Monte Carlo

simulation result for F0 and Diff. is the difference between the simulation result and F0. The values in

parentheses represent |Diff .|/Simul . as the percentage

ρσ=ρr=-0.5 ρσ=-0.5,ρr=0.5 ρσ=0.5,ρr=-0.5 ρσ=ρr=0.5
Simul. 109.621 109.876 109.621 109.879
FC 111.628 111.628 111.628 111.628
FD − FC -1.885 -1.885 -1.885 -1.885
f0 109.743 109.743 109.743 109.743
εFr -0.128 0.128 -0.128 0.128
F0 109.615 109.871 109.615 109.871
Diff . 0.006 0.005 0.006 0.008

(0.005%) (0.007%) (0.005%) (0.007%)

Table 2: European Stock Call Option Value under Downward Stochastic Interest Rate
and Upward Volatility: At-the-money Case
We set r0 = 0.11 > r̄ = 0.08, κr = 2.0, ε = 0.1 for the interest rate process and σ0 = 0.20 < σ̄ = 0.30,

κσ = 4.0, δ = 0.1 for the volatility process. Furthermore, we assume S0 = K = 100 and T = 1.0. BS

is the original Black-Scholes value and BSi (i = D,r, σ) are the same as in (3.51). V0 stands for the

option value under the stochastic volatility and interest rate BS + [BSD −BS] + εBSr + δBSσ . SRV C

is the option value under stochastic interest rate and constant volatility BS + [BSD − BS] + εBSr

when σ̄ = σ0 and δ = 0. SVRC is the option value under constant interest rate and stochastic volatility

BS + [BSD − BS] + δBSσ when r̄ = r0 and ε = 0. SRV D is the option value under the stochastic

interest rate and deterministic volatility BS + [BSD − BS] + εBSr. SVRD is the option value under

the deterministic interest rate and stochastic volatility BS + [BSD − BS] + εBSσ. Simul. represents

the Monte Carlo simulation result for V0 and Diff. is the difference between simulation result and V0.

ρσ=ρr=-0.5 ρσ=-0.5,ρr=0.5 ρσ=0.5,ρr=-0.5 ρσ=ρr=0.5
Simul. 15.435 15.730 15.363 15.667
BS 13.868 13.868 13.868 13.868
BSD-BS 1.667 1.667 1.667 1.667
εBSr -0.150 0.150 -0.150 0.150
δBSσ 0.035 0.035 -0.035 -0.035
SRV C 12.778 12.933 12.778 12.933
SVRC 16.488 16.488 16.399 16.399
SRV D 15.385 15.686 15.385 15.686
SVRD 15.570 15.570 15.500 15.500
V0 15.420 15.721 15.350 15.651
Diff . 0.015 0.009 0.013 0.016

(0.097%) (0.057%) (0.085%) (0.102%)
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Table 3: European Stock Call Option Value under Downward Stochastic Interest Rate
and Upward Volatility: In-the-money Case
We set r0 = 0.11 > r̄ = 0.08, κr = 2.0, ε = 0.1 for the interest rate process and σ0 = 0.20 < σ̄ = 0.30,

κσ = 4.0, δ = 0.1 for the volatility process. Furthermore, we assume S0 = 110 > K = 100 and T = 1.0.

Other symbols are the same as those in Table 2.

ρσ=ρr=-0.5 ρσ=-0.5,ρr=0.5 ρσ=0.5,ρr=-0.5 ρσ=ρr=0.5
Simul. 22.913 23.170 22.741 23.010
BS 21.984 21.984 21.984 21.984
BSD-BS 0.961 0.961 0.961 0.961
εBSr -0.132 0.132 -0.132 0.132
δBSσ 0.084 0.084 -0.084 -0.084
SRV C 20.677 20.794 20.677 20.794
SVRC 24.137 24.137 23.958 23.958
SRV D 22.812 23.077 22.812 23.077
SVRD 23.029 23.029 22.860 22.860
V0 22.897 23.162 22.728 22.993
Diff . 0.016 0.008 0.013 0.017

(0.070%) (0.035%) (0.057%) (0.074%)

Table 4: European Stock Call Option Value under Downward Stochastic Interest Rate
and Upward Volatility: Out-of-the-money Case
We set r0 = 0.11 > r̄ = 0.08, κr = 2.0, ε = 0.1 for the interest rate process and σ0 = 0.20 < σ̄ = 0.30,

κσ = 4.0, δ = 0.1 for the volatility process. Furthermore, we assume S0 = 90 < K = 100 and T = 1.0.

Other symbols are the same as those in Table 2.

ρσ=ρr=-0.5 ρσ=-0.5,ρr=0.5 ρσ=0.5,ρr=-0.5 ρσ=ρr=0.5
Simul. 9.241 9.541 9.309 9.609
BS 7.363 7.363 7.363 7.363
BSD-BS 2.049 2.049 2.049 2.049
εBSr -0.151 0.151 -0.151 0.151
δBSσ -0.032 -0.032 0.032 0.032
SRV C 6.584 6.749 6.584 6.749
SVRC 10.066 10.066 10.109 10.109
SRV D 9.261 9.562 9.261 9.562
SVRD 9.379 9.379 9.444 9.444
V0 9.228 9.530 9.293 9.595
Diff . 0.013 0.011 0.016 0.014

(0.141%) (0.115%) (0.172%) (0.146%)
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