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Abstract

In operations research and management sciences, the data envelopment analy-
sis (DEA) has been known as one of important tools. We develop a statistical
data envelopment analysis (SDEA), which seems to be new to operations re-
search literatures as well as statistical community. We first consider the basic
statistical DEA model, in which the observed data is the sum of an increasing
concave function of inputs and a random noise (or inefficiency) term taking
only non-positive value. The purpose of data analysis is to estimate the un-
known function, called the efficiency frontier, nonparametrically based on the
set of observed data of inputs and outputs. The key idea is to use the non-
parametric statistical analysis, the linear regression analysis and the statistical
extreme value theory. We report an empirical analysis on the life-insurance
industry in Japan as an application.
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1. Introduction

In operations research and management sciences, the data envelopment analysis
(DEA) has been known as one of important tools. See Cooper, Seiford, and Tone
(2007) for the details of existing known methods and history in operations research,
which are often based on the mathematical programming techniques. In economics,
on the other hand, the parametric statistical estimation method of production fron-
tiers has been known since Aigner, Lovell, and Schmidt (1977). (It is also related
to the cost function and the problem is fundamental in micro-econometrics.) The
main purposes of these two methods are similar, but their traditional approaches
and mathematical techniques to solve the problems are quite different.

In this paper, we develop a statistical data envelopment analysis (SDEA), which
seems to be new to operations research literatures as well as econometrics and sta-
tistical sciences. We first consider the basic statistical DEA model, in which the
observed data is the sum of an increasing concave function and a random noise (or
inefficiency) term, taking non-positive values. The purpose of statistical data anal-
ysis is to estimate the unknown function, called the efficiency frontier, nonparamet-
rically based on the set of observed data. The key idea is to use the non-parametric
statistical analysis, the regression analysis, and the statistical extreme value theory
(SEVT) as the statistical methods to estimate the unknown envelop function. When
the sample size is not large, we have found that the estimation method based on the
SEVT method may not be satisfactory in some cases. Then, as the first estimation
method, we shall use an estimation method based on the linear regression, which
is quite simple and straightforward. However, we find that it has some possible
efficiency loss in estimation when the sample size is large. Then we shall introduce
the second estimation method based on the SEVT method. We shall show that the
order of second estimation method of unknown parameters is faster than the first
estimation method. We also consider the case when we have measurement errors as
well as inefficiencies in the observed data sets.

The main purpose of this paper is to introduce our new statistical approach
to the EDA problem and some theoretical results. Then we shall also report an
empirical analysis of the life insurance industry in Japan as an application. Since
the number of data is about 40, which is quite small as the DEA problem, we have
applied the regression-based method in this case. Since our approach is not along
the traditional approaches in operations science and management sciences, first we
explain the basic case, and then we generalize the simple formulation to more general
cases.

The reminder of this paper is organized as follows. In Section 2, we discuss
the formulation of SDEA and the first estimation method in the simple case. In
Section 3, we give the second estimation method for the case when the sample size
is large. In Section 4, we discuss the relation of our SDEA model and its relation
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to the type-II extreme value distribution and the SEVT method. In Section 5, we
generalize the basic SDEA method when we have several explanatory variables. In
Section 6, we discuss the problem of measurement errors in the analysis of efficient
frontiers. In Section 7, we report an empirical study of the SDEA method for the
life-insurance industry in Japan. In Section 8, we provide some concluding remarks.

2. A New Approach of SDEA

We formulate our problem as the non-parametric estimation of a statistical DEA
model. Let the output level and input-level be Y and X, respectively, which are
non-negative. We assume that the efficient frontier function h(·) may be smooth
and twice-differentiable with h‘ > 0 and h‘′ < 0. (We often consider the case
when we only know that f(·) is a concave function.) Let also the random variable U
representing the inefficiency term from the efficient frontier function, and we assume
the relation

Y = h(X) + U (U ≤ 0) .(2.1)

In the standard EDA, both X and Y take any real numbers, and in real applications
we only observed a finite number of data on X and Y . (We use N as the sample
size.)

Let Yi (i = 1, · · · , N), Xi (i = 1, · · · , N) are the observed output and input
levels, which are non-negative, and hm(X) is an increasing concave piece-wise linear
frontier function of the input level X as

hm(x) = ak + bkx (x ∈ I
(m)
k ; k = 1, · · · ,m) ,(2.2)

where I
(m)
k = (w

(k)
1 , w

(k)
2 ] ( w

(k)
1 ≤ w

(k)
2 ), 0 ≤ w

(0)
1 < w

(1)
1 < · · · < w

(m)
1 and

0 ≤ w
(0)
2 < w

(1)
2 < · · · < w

(m)
2 .

In this study, we restrict our foumulation to the case when Xi is a bounded deter-
ministic variable and w

(0)
1 ≤ X1 ≤ X2 ≤ · · · ≤ XN ≤ w

(m)
2 . Because of concavity,

we impose the monotonicity restrictions on coefficients such that

0 ≤ a1 ≤ · · · ≤ am , b1 ≥ · · · ≥ bm ≥ 0 .(2.3)

Let also Ui (i = 1, · · · , N) is a sequence of i.i.d. random variables, which take
non-positive numbers and as a typical case we take that Ui follows the negative
exponential distribution such that for some positive λ > 0

F (u) = P (Ui ≤ u) = exp[λu] (u ≤ 0) .(2.4)

and the basic model is given by

Yi = hm(Xi) + Ui (i = 1, · · · , N) .(2.5)
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The important feature of this representation is the restrictions that hm(Xi) is in
the class of non-decreasing piece-wise linear concave function and Ui takes only
non-positive real values. The efficient frontier function h(X), which is the main
interest of investigation, but it is unknown for researchers. This problem has been
well known as the DEA model in operations research and there have been numerous
applications. Also in econometrics, there has been some literatures such as the
econometric estimation of production frontier. (See Green (2003), for instance.)

Given a finite number of data sets (Xi, Yi) (i = 1, · · · , N), it is only possible to
estimate the unknown function hm(x) when m = mN is less than N . We divide the

intervals I
(m)
k such that

∪m
k=1 I

(m)
k = (w

(1)
1 , w

(m)
2 ] and we denote nk as the number of

data in I
(m)
k = (w

(k)
1 , w

(k)
2 ] with

m∑
k=1

nk ≥ N .

We shall investigate some statistical estimation method of the piece-wise linear func-
tion ĥm such that as m is large and as m → +∞.

sup
x

|ĥm(x)− h(x)| p−→ 0 .(2.6)

It is because

sup
x

|ĥm(x)− h(x)| ≤ sup
x

|ĥm(x)− hm(x)|+ sup
x

|hm(x)− h(x)| p−→ 0 .

For a finite N , one way to estimate the smooth function h(x) in practice is to use
some spline functions based on the estimated ĥm(x) at m nodes.

We illustrate a typical situation of the present problem as Figure 1. There are
200 firms with a common technology Y = X0.3 (X > 0) to produce an output Y and
one input X in an economy. Although there could be efficient firms in the market,
but most firms are inefficient and the inefficiency can be denoted as U (U ≤ 0),
where U is a (non-positive) continuous random variable. We generated a set of
random variables from the negative exponential distribution. Since we do not know
the exact form of the underlying technology f(X) = X0.3 except the fact that
Y (= f(X) +U) and f is non-negative and concave, and our task is to estimate the
unknown function f nonparametrically from a set of data (Xi, Yi) (i = 1, · · · , 200).
Then, we try to draw several lines locally by using a set of data around some value
at X, which are tangent to the true efficient technology curve at that value of X.
We have six estimated tangent lines in Figure 1.

We will propose two non-parametric statistical ways to solve the present statis-
tical problem. In the k-th interval, we set n = nk (k = 1, · · · ,m) and m is fixed.
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Figure 1: A typical situation : We estimated six tangent lines for the efficient
frontiers from simulated data.

We consider the problem of estimating the tangent line of h(X) in I
(m)
k any given

X = x(> 0) = (w
(k)
1 + w

(k
2 )/2 such as

Yi = ak + bkXi + Ui (i = 1, · · · , n) ,(2.7)

where we often use notation that a = ak, b = bk and ak + bkx ≥ h(x), Xi ∈ I
(m)
k =

(w
(k)
1 , w

(k)
2 ] and ak and bk are unknown parameters. We assume that we have nk(1)

observations in (w
(k)
1 , x], nk(2) observations in (x,w

(k)
2 ] (nk = nk(1) + nk(2)) and

x = (1/nk)
∑n

i=1Xi
1.

In the following analysis, we first fix a k (k = 1, · · · ,m)) and set n = nk,
n(1) = nk(1), and n(2) = nk(2) in this subsection because we will consider the

estimation problem a and b in the k-th interval I
(m)
k for a positive integer k. Then

our proposal is to use the tangent function a+ bx to estimate the unknown function
h(x).

The first estimation method of a and b :

When the sample size of data is not large, we develop the first estimation method,
which is based on the linear regression model in each interval. We should note that

1It is possible to use the sample median value of X instead of the sample mean.
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the first estimation method can be substantially improved when the sample size of
data is large, however, as we shall discuss in Section 3.

In the k-th interval, we use the regression coefficient

b̂LSk =

∑n
i=1(Yi − Ȳ )(Xi − X̄)∑n

i=1(Xi − X̄)2
(2.8)

and
âLSk = min

i=1,···,n
{a|a+ b̂kXi ≥ Yi} ,(2.9)

where Ȳ = (1/n)
∑n

i=1 Yi and X̄ = (1/n)
∑n

i=1 Xi.

Here, we need the monotonicity restrictions on the estimated coefficients and impose
the conditions with k (k = 1, · · · ,m) such that

0 ≤ âLS1 ≤ · · · ≤ âLSm , b̂LS1 ≥ · · · ≥ b̂LSm ≥ 0 .

When the estimated coefficients in an interval do not satisfy the restrictions, we sim-
ply disregard the estimated coefficients and information in the associated intervals.
We have the following asymptotic result.

Theorem 1 : Assume that Ui (≤ 0) is a sequence of i.i.d. random variables with
E[Ui] = γ, V[Ui] = σ2

u < +∞, the density f(u) is bounded and smooth at u = 0,
and Xi are bounded.
(i) Then, in each interval I

(m)
k , as n → ∞[

âLSk − ak
b̂LSk − bk

]
p−→ 0 .(2.10)

(ii) As n → ∞
√
n(b̂LSk − bk)

w−→ N(0,
σ2
u

Mx

) ,(2.11)

where we assume Mx = limn→∞(
1
n
)
∑n

i=1(Xi − X̄)2 is a positive constant.
As n → ∞

n(âLSk − ak)
w−→ Za ,(2.12)

where Za follows Ga(z) = exp[f(0)za] (za ≤ 0) .

Proof of Theorem 1 : We use the standard arguments of linear regression in the
first part. By using (2.7) and (2.8), we write

√
n(b̂LSk − bk) =

1√
n

∑n
j=1(Xj − X̄)(Uj − Ū)
1
n

∑n
j=1(Xj − X̄)2

.(2.13)
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The denominator converges to Mx and the numerator converges to N(0, σ2
uMx) in

distribution by applying the central limit theorem (CLT).
Next, we use the relation

âLSk − ak = min
i=1,···,n

{α|Yi ≤ α + β̂kXi} − α

= max
i=1,···,n

{Yi − β̂kXi} − α

= max
i=1,···,n

{Ui + (βk − β̂k)Xi} .

By our assumption, Xi is bounded (|Xi| ≤ K) and then for any positive ϵn → 0, we
know that P (|(b̂LSk − bk)Xi| ≤ ϵn) → 1. Then for any positive sequences zn,

P ( max
i=1,···,n

(Ui + ϵn) ≤ zn) =
n∏

i=1

P (Ui ≤ zn − ϵn)

= exp{
n∑

i=1

logF (zn − ϵn)}

where Ui is a sequence of i.i.d. random variables with F . We re-write the last term
can be re-written as

exp{
n∑

i=1

log[1− 1

n
(nF̄ (zn − ϵ))]}

where F̄ (x) = 1 − F (x) (i.e. it is the tail probability because F (0) = 1). By using
the Talor expansion of F̄ (z) around z = 0 and setting limn→∞ n(zn − ϵn) = z, we
can approximate −nF̄ (zn − ϵn) ∼ f(0)(zn − ϵn) → f(0)z as n → ∞. Similarly,
by evaluating P (maxi=1,···,n(Ui − ϵn) ≤ zn)) and setting limn→∞ n(zn + ϵn) = z, we
obtain the same limiting distribution. Since the difference of P (n[âLSk − ak] ≤ z)
and P (maxi=1,···,n(Ui + ϵn) ≤ zn with n(zn − ϵn) = z is stochstically negligible as
n → ∞, we have the result.
(Q.E.D.)

We notice that the order of convergence in b̂k is
√
n while the order of convergence

in âk is n because of the structure of our problem. It suggests that we may improve
the order of convergence in the estimation of slope b̂k. We shall show that the
convergence rate is n in the second estimation method.

As a numerical illustration of SDEA by using the first estimation method, we
show the estimated efficient frontier in Figure 2 based on some simulated data. Al-
though the true efficient frontier function is a continuous concave in this example,
the observed data look non-concave in several intervals because we have a finite
number of observations as well as the presence of negative noises. The first estima-
tion method work well because we have used the piece-wise linear efficient frontier
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Figure 2: An estimated efficient frontier : For simulated data, we used the second
estimation method to estimate the piece-wise tangent lines.

functions and we took m = 5 in this example. When there are very many observa-
tions, the 2nd estimation in the next section work well, which has some statistical
optimality. When there are many observations in any fixed intervals, the SEVT
method works in each intervals. (See Sections 3 and 4 for the detail.) When the ob-
served data is not large, however, the first estimation method usually give reasonable
solutions for practical purposes in our simulations.

3. The Second Approach of SDEA when the sample size is
large

It is possible to improve the first estimation method when the sample size is
large. Our second estimation method is based on the statistical extreme value theory
(SEVT). The SEVT method has been developed as a branch of statistics, whose
focus is on the extremal and rare events such as natural disasters. See Embrechts,
P., Klüppelberg, C. and Mikosch (1997) for some details. There are three types of
extreme value distributions in SEVT, and we shall use the second type of extreme
distribution because of the SDEA structure that there is an upper bound of observed
data, which is the main target of the SDEA problem in this paper.

In this section, we also first fix a k (k = 1, · · · ,m) and we order the data as 0 <

X1 ≤ · · · ≤ Xn in I
(m)
k . LetXL = (1/n(1))

∑n(1)
i=1 Xi andXM = (1/n(2))

∑n
i=n(1)+1Xi
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(n = n(1) + n(2)), and we assume that 0 < XL < XM . Let aslo YM(1) =
max1≤i≤n(1) Yi and YM(2) = maxn(1)+1≤i≤n Yi.
Then we define the second estimation method, which is based on the SEVT, by

b̂k =
YM(2)− YM(1)

XM −XL

(3.1)

and
âk = min

i=1,···,n
{a|a+ b̂kXi ≥ Yi} .(3.2)

We impose the monotonicity restrictions on the estimated coefficients I
(m)
k (k =

1, · · · ,m) such that

0 ≤ â1 ≤ · · · ≤ âm , b̂1 ≥ · · · ≥ b̂m ≥ 0 .(3.3)

When the estimated coefficients in any interval do not satisfy the necessary restric-
tions, we simply disregard the estimated coefficients and the associated intervals.

For the asymptotic properties of the resulting estimation method, we have the fol-
lowing result on the consistency of âk and b̂k.

Theorem 2 : Assume that Ui (≤ 0) is a sequence of i.i.d. negative-exponential ran-
dom variables with λ (> 0) and Xi are bounded. In the present model, we consider
the case when n −→ ∞ (n(1), n(2) → +∞). Then, as n → ∞[

âk − ak
b̂k − bk

]
p−→ 0 .(3.4)

Proof of Theorem 2 : Let Yi (i = 1, · · · , n(1)) and Xi ∈ [X1, Xn(1)] (i =
1, · · · , n(1)). Then

P (max
1≤i≤n

Yi ≤ zn) =
n(1)∏
i=1

P (Yi ≤ zn)(3.5)

=
n(1)∏
i=1

P (Yi − (ak + bkXi) ≤ zn − (ak + bkXi))

=
n(1)∏
i=1

P (Ui ≤ zn − (ak + bkXi))

= exp[λ(n(1)zn − n1ak − bk

n(1)∑
i=1

Xi)]

= exp[λn(1)(zn − ak − bkX̄L)] ,
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where X̄L = (1/n(1))
∑n(1)

i=1 Xi.
If we take zn − ak − bkX̄L = −δ (δ > 0), then as n → ∞ the probability becomes 0.
If we set zn − ak − bkX̄L = 0, then it becomes 1 as n → ∞. Hence

max
1≤i≤n

Yi − (ak + bkX̄L)
p−→ 0 .(3.6)

We set the data intervals as I1 = (X1, Xn(1)] and I2 = [Xn(1)+1, Xn] with n =

n(1)+n(2). b by b̂. Then, by using the same augument on Xi ∈ [Xn(1)+1, Xn(1)+n(2)]
as Xi ∈ [X1, Xn(1)],

max
i∈I1

Yi − (ak + bkX̄L)
p−→ 0 ,max

i∈I2
Yi − (ak + bkX̄M)

p−→ 0

and
[max
i∈I2

Yi −max
i∈I1

Yi]− bk[X̄M − X̄L]
p−→ 0 .(3.7)

Hence, we have
b̂k − bk

p−→ 0 .(3.8)

On the parameter a, we have

max
1≤i≤n

[Yi − b̂kXi] = max
1≤i≤n

[ak + bkXi + Ui − b̂kXi](3.9)

= a+ max
1≤i≤n

[Ui + (bk − b̂k)Xi]

and

P (max
1≤i≤n

[Yi − b̂kXi]− ak ≤ zn) = P (max
1≤i≤n

[Ui + (bk − b̂k)Xi] ≤ zn) .

Since bk − b̂k
p→ 0 and Xi are bounded, we can take ϵn = K/n1−α (α > 0) such that

P (|(bk − b̂k)Xi| ≤ ϵn) → 1 for a constant K. We take zn = ϵn + ϵn (or zn = zn − ϵn)
and apply the arguments of the last part of the proof of Theorem 1 to find

âk − ak
p−→ 0 .(3.10)

(Q.E.D.)

By constructing the estimated efficiency frontier as

ĥm(x) = âk + b̂kx (any x ∈ I
(m)
k ) ,(3.11)

we have the consistent estimator of the piece-wise function h(mx), It is because

ĥm(x)− hm(x) = (âk − ak) + (b̂k − bk)x
p−→ 0.

For the asymptotic distribution of the estimated coefficients, we have the following
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result on b̂k and âk.

Theorem 3 : Assume that Ui (≤ 0) is a sequence of i.i.d. negative-exponential
random variables with λ (> 0) and Xi are bounded. In the present model, we
consider the case when n −→ ∞ (n(1), n(2) → +∞). Then we have the asymptotic
distributions as follows,
(i) As n → ∞

n(b̂k − bk)
w−→ Zb = λ1Z1 − λ2Z2 ,(3.12)

where Zi (i = 1, 2) follows G(λ) = eλzi (i = 1, 2). The distribution Zb follows
Gb(z) = [λ1/(λ1+λ2) exp[

λ
λ1
z] (z < 0), Gb(z) = [−λ2/(λ1+λ2)[1−exp[ λ

λ2
z] (z ≥ 0),

where λ1 = [1/(XM−XL)][limn,n(1)→∞
n

n(1)
] and λ2 = [1/(XM−XL)][limn,n(2)→∞

n
n(2)

]

(λ1 > 0, λ2 > 0).
(ii) As n → ∞

n(âk − ak)
w−→ Za ,(3.13)

where Za follows Ga(z) = exp[λza] (za ≤ 0) .

Proof of Theorem 3 : For the asymptotic distribution of b̂k, let Z1n = n(1)[maxI1 Yi−
(ak + bkX̄L)] and Z2n = n(2)[maxI2 Yi − (ak + bkX̄M)]. Then

n(b̂k − bk) =
n

X̄M − X̄L

[
Z1n

n(1)
− Z2n

n(2)
] = λ1nZ1n − λ2nZ2n ,(3.14)

where λ1n = n
n(1)(X̄M−X̄L)

and λ2n = n
n(2)(X̄M−X̄L)

.

Because the asymtotic distribution of Z1n and Z2n is given by

G(z1, z2) = exp[λ(z1 + z2)] (z1 ≤ 0, z2 ≤ 0) ,

where λ1 = limn→∞ λ1n and λ2 = limn→∞ λ2n, We need some care on the asymptotic
distribution of b̂k because Z1 ≤ 0 and Z2 ≤ 0 and Z = λ1Z1−λ2Z2 can take positive
and negative values. When Z = λ1Z1 − λ2Z2 ≥ 0, {Z ≤ z} and Z1 ≤ 0 imply
(λ1Z1− z)/λ2 ≤ Z2 ≤ (λ1/λ2)Z1. When Z = λ1Z1−λ2Z2 ≤ 0, {Z ≤ z} and Z2 ≤ 0
imply Z1 ≤ (λ2Z2 + z)/λ1. Hence we need to consider two cases, separately.
For z < 0 is given by

P (Z ≤ z) = P (Z1 −
λ2

λ1

Z2 ≤
1

λ1

z)

=
∫ 0

−∞

[∫ (λ2z2+z)/λ1)

−∞
λ2 expλ(z1 + z2)dz1

]
dz2

=
λ1

λ1 + λ2

exp[
λ

λ1

z] .

For z ≥ 0, we have an evaluation as

P (Z ≤ z) =
∫ 0

−∞

[∫ (λ1/λ2)z1

(λ1z1−z)/λ2

λ2 expλ(z1 + z2)dz2

]
dz1

11



=
∫ 0

−∞
λ exp(λz1)[exp(λ(λ1/λ2)z1)− exp(λ((λ1z1 − z)/λ2)z1)]dz1

=
λ2

λ1 + λ2

[1− exp(− λ

λ1

z)] .

To obtain the asymptotic distribution of âk, we prepare the next lemma.

Lemma 3.1 : Let Z1n = n(1)maxI1 Ui, Z2n = n(2)maxI2 Ui, and Zn = nmaxI1∪I2 Ui.
Then the asymptotic distribution of (Z1n, Z2n, Zn) is given by Gλ(z1, z2, z).

Proof : We evaluate the joint probability and its approximation when n(1), n(2) −→
∞ (n → ∞) as

P (Z1n ≤ z1, Z2n ≤ z2, Zn ≤ z)

=
n(1)∏
i=1

P (Ui ≤ z1/n(1), Ui ≤ z/n)×
n∏

i=n(1)+1

P (Ui ≤ z2/n(2), Ui ≤ z/n)

=
n(1)∏
i=1

P (Ui ≤ min(z1, c1z)/n(1))×
n∏

i=n(1)+1

P (Ui ≤ min(z2, c2z)/n(2))

∼ exp{λ[min(z1, c1z) + min(z2, c2z)]} ,

where c1 = limn,n(1)→∞ n(1)/n (> 0) and c2 = limn,n(2)→∞ n(2)/n (> 0).
(End of the proof of Lemma 3.1)

For the asymptotic distribution of âk, we use the asymptotic distribution of b̂k,
âk = maxi=1,···,n[Yi − b̂kXi],

âk − ak = max
i=1,···,n

[Yi − ak − bkXi + (bk − b̂)Xi]

and
P (âk − ak ≤ zn) = P (max[Ui + (bk − b̂k)Xi] ≤ zn) .

We can use the fact that n[b̂k − bk]
w→ Zb and Xi (i = 1, · · · , n) is bounded. Then

we can take ϵn such that

P (|[b̂k − bk]Xi| ≤ ϵn for any i) → 1

and ϵn → 0 as n → ∞.
Also

P (max[Ui + ϵn] ≤ zn) =
n∏

i=1

P (Ui ≤ zn − ϵn)

= exp[λn(zn − ϵn)] .

12



Then, by setting (zn − ϵn) = z/n, we have the result in Theorem 3.
(Q.E.D.)

It is important to notice that the order of convergence is n instead of
√
n. It is due

to the fact that we use the estimation method based on the maximum value in the
intervals.

For the piece-wise linear function hm(x), we set X = x, and by using Lemma 3-1,
we have the following asymptotic distribution.

Corollary 3.1 : Under the same setting with x = X̄, ĥm(x) − hm(x)
p−→ 0 , and

the asymptotic distribution is given by

n[ĥm(x)− hm(x)]
w−→ Zh = Za + (λ1Z1 − λ2Z2)x ,(3.15)

where the joint distribution of (Za, Z1, Z2) is given by

Gλ(z, z1, z2) = exp{λ[min(z1, λ1z) + min(z2, λ2z]} (z1 ≤ 0, z1 ≤ 0, z ≤ 0) .(3.16)

The asymptotic distribution depends on the unknown parameter λ (> 0). It may be

natural to use the residuals Ûi = Yi − âk − b̂kXi in I
(m)
k to estimate λ by (−1)λ̂−1 =

(1/n)
∑n

i=1 Ûi. Then the confidence interval for λ can be constructed.

4. The Case of Repeated Observations

One important assumption on the 2nd method in Section 3 is that the inefficiency
factor U follows the negative-exponential distribution. In this section we assume
that the inefficiency is a sequence of i.i.d. with the unknown continuous distribution
F . We consider the case when we have repeated observations with a fixed X. We
denote Xk (k = 1, · · · ,m) and

Ykj = bkXk + Uij (k = 1, · · · ,m; j = 1, · · · , nk)(4.1)

where Ukj (≤ 0) is a sequence of i.i.d. random variables with the distribution
function F and we have the zero intercept coefficient.

We consider the situation that given Xk = x, there are many observations in
each intervals and nk → +∞ under the assumption that f(0) is bounded. We use

P ( max
j=1,···,nk

Ykj ≤ zn) =
nk∏
j=1

P (Uij ≤ zn − bkXk)

= exp{
nk∑
j=1

log[1− 1

nk

nkF̄ (zn − bkXk)]}

∼ exp{− 1

nk

nk∑
j=1

[nkF̄ (zn − bkXk)]]}

13



as nk → ∞ if we take zn = z/nk + bkXk and F̄ (x) = 1− F (x).
Then, by using the Taylor expansion of F̄ (x) around x = 0 (F̄ (0) = 0), as nk → ∞
(k = 1, · · · ,m)

P (nk[ max
j=1,···,nk

Ykj − bkXk] ≤ z) −→ exp[f(0)z] (z ≤ 0) ,(4.2)

provided that f(0) is bounded.
When F (u) is the negative-exponential distribution F (u) = exp[λu] (u ≤ 0) with
λ (> 0), we have f(0) = λ.

More generally, it is possible to consider a general situation when f(x) diverges at
x = 0. A typical case may be the pareto-type distribution, and then we need to
assume that

F̄ (−x−1) = x−αL(x) ,(4.3)

where L(x) is a slowly varying function and α > 0. This formulation is the standard
assumption in the statistical extreme value theory (SEVT) in statistics.
Then Theorem 3.3.12 of Embrechts, P., Klüppelberg, C. and Mikosch (1997) implies
that we can choose c(nk)

−1 = −F←(1− n−1k ) such that as ni → ∞

P (c(nk)[ max
j=1,···,nk

Ykj − bkXk] ≤ z) −→ exp[−(−z)α] (z ≤ 0) ,(4.4)

where α > 0.
This asymptotic distribution has been known as the Weibull-type extreme value
distribution. In this case, however, we need to estimate the scale parameter α in
the general case, which may not be a trivial task.

5. A General Case with Several Explanatory Variables

We consider a generalization of Sections 2 and 3, and let p be the number of ex-
planatory variables. We set p = 2 although it is straightforward to consider more
general cases with some notational as well as numerical complications.

For j = 1, 2, let I
(mj)
kj

= (w
(kj)
j1 , w

(kj)
j2 ] ( w

(kj)
j1 ≤ w

(kj)
j2 ), 0 ≤ w

(0)
j1 < w

(1)
j1 < · · · <

w
(mj)
j1 and 0 ≤ w

(0)
j2 < w

(1)
j2 < · · · < w

(mj)
j2 . For k = (k1, k2)

′
, m = (m1,m2)

′
and

I
mj

kj
= (w

kj
j1 , w

kj
j2 ] (j = 1, 2), we set the (k1, k2)−th region by I

(m)
k = I

(m1)
k1

× I
(m2)
k2

.
We estimate the hyperplanes of the form

hm(X) = ak + b1kX1 + b2kX2(5.1)

in X = (X1, X2)
′ ∈ ∪

k I
(m)
k with the concavity restrictions.

Let vectors x = (x1, x2)
′
, x(1) = (x1(1), x2(2))

′
and x(2) = (x1(2), x2(2))

′
be in∪

k I
(m)
k and let non-negative scalars λj (j = 1, 2). Then the concavity restrictions

imply that
hm(x) ≥ λ1hm(x(1)) + λ2hm(x(2))(5.2)
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for any x = λ1x(1) + λ2x(2) and λ1 + λ2 = 1.
It is straightforward to check these conditions numerically at every estimation, but
there may be some complications in their numerical evaluations. Then we have used
the following steps.
(Step 1) : First, we estimate a hyperplane h1(X1, X2) = a(1) + b1(1)X1 + b2(1)X2

by using all data with the restrictions a(1) ≥ 0 , b1(1) ≥ 0 , b2(1) ≥ 0 in the region
I(1) = I1(1)× I2(1) (X1 ∈ I1(1) and X2 ∈ I2(1)).
(Step 2) : Next, we take either I1(1) or I2(1) and take two intervals I1(1) =
I1(2) ∪ I2(2) or I2(1) = I1(2) ∪ I2(2). Then, we estimate hyperplanes h1(X1, X2) =
a(2) + b1(2)X1 + b2(2)X2 in each regions and check the concavity restrictions and
non-negativity of coefficients. If they were not satisfied, we disregard the estimation
results. If they were satisfied, we use the regression result and use the piece-wise
linear functions.
(Step 3) : We repeat the same procedure. Since the number of data is finite, we
will stop this procedure eventually. (We have taken m such that m1 and m2 are less
than 0.1× (sample size).)

The first estimation method of a and b

We can extend the estimation of unknown coefficients with one explanatory vari-
able to the one with several variables. We illustrate this problem and consider
the case of two explanatory variables. We first fix k1 and k2 such that n(p, q) =
nk1,k2(p, q) (p, q = 1, 2). We apply the least squares estimators of the coefficient
vector and construct the intercept coefficient by adjusting the level of output. Then
we continue to construct coefficients such that they satisfy the monotonicity restric-
tions.
For the first estimation method of coefficients in Section 2, it is straightforward
to extend the method in Section 2 to the case when there are several explanatory
variables. The coefficients bjk (j = 1, · · · , p; k = 1, · · · ,m) can be estimated by the
linear regression equation

b̂LS
k = [

n∑
i=1

XiX
‘
i]
−1[

n∑
i=1

XiYi] ,(5.3)

where Xi = (Xji) is a p× 1 vector of input variables and Yi is the output variable.
The estimator of the intercept coefficient ak is given by

âLSk = min
i=1,···,n

{a|a+ b̂LSk Xi ≥ Yi} .(5.4)

The order of the asymptotic distribution of bjk and ak (j = 1, · · · , p; k = 1, · · · ,m)
are

√
n and n, respectively. It is because Theorem 1 and its proof can be extended

directly to this case.
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The second estimation method of a and b

We can apply the 2nd estimation method based on the SEVT method explained
in Section 3 with the concavity restrictions. As for an illustration and we divide
the regions I

(m)
k (1, 1) = (w

(k1)
11 , x1] × (w

(k2)
21 , x2], I

(m)
k (1, 2) = (x1, w

(k1)
11 ] × (w

(k2)
21 , x2],

I
(m)
k (2, 1) = (w

(k1)
11 , x1]× (x2, w

(k2)
21 ], and I

(m)
k (2, 2) = (x1, w

(k1)
11 ]× (x2, w

(k2)
22 ].

For estimation, we take a combination of k and m and set
X1(1, 1) = (1/n(1, 1))

∑
i∈I(1,1)X1i, X1(2, 1) = (1/n(2, 1))

∑
i∈I(2,1)X1i, X2(1, 1) =

(1/n(1, 1))
∑

i∈I(1,1)X2i, and X2(1, 2) = (1/n(1, 2))
∑

i∈I(2,1)X2i,

where n(j, k) are the number of observations in I
(m)
k (j, k) (j, k = 1, 2). The cor-

responding output values in each regions as YM(1, 1) = maxi∈I(1,1) Yi, YM(2, 1) =
maxi∈I(2,1) Yi, and YM(1, 2) = maxi∈I(1,2) Yi.
Then, the following derivations are the direct extensions of Section 3. By using the
assumption of negative-exponential distribution, we first use the relation

P (max
I(2,1)

Yi ≤ zn) = P (max
I(2,1)

[Ui + a+ b1X1i + b2X2i] ≤ zn)

=
n(2,1)∏
i=1

P (Ui + a+ b1X1i + b2X2i ≤ zn)

= exp{λn(2, 1)zn − n(2, 1)a− b1

n(2,1)∑
i=1

X1i − b2

n(2,1)∑
i=1

X2i)

= exp{λn(2, 1)[zn − a− b1X1(2, 1)− b2X2(2, 1)]} .

Then, by using the same arguments in Section 3, we have

max
I(2,1)

Yi − [a+ b1X1(2, 1) + b2X2(2, 1)]
p−→ 0 .

Similarly, we find that maxI(1,1) Yi−[a+b1X1(1, 1)+b2X2(1, 1)]
p−→ 0 and maxI(1,2) Yi−

[a+ b1X1(1, 2) + b2X2(1, 2)]
p−→ 0 .

By using the above relations,

[YM(2, 1)− YM(1, 1)]− b1[X1(2, 1)−X1(1, 1)]− b2[X2(2, 1)−X2(1, 1)]
p−→ 0

and

[YM(1, 2)− YM(1, 1)]− b1[X1(1, 2)−X1(1, 1)]− b2[X2(1, 2)−X2(1, 1)]
p−→ 0 .

We define the estimator (b̂1, b̂2) of slope coefficients by[
YM(2, 1)− YM(1, 1)
YM(1, 2)− YM(1, 1)

]
=

[
X1(2, 1)−X1(1, 1) X2(2, 1)−X2(1, 1)
X1(1, 2)−X1(1, 1) X2(1, 2)−X2(1, 1)

] [
b̂1
b̂2

]
.

The estimator â of intercept coefficient defined by

â = min
i∈Ik1,k2

{a|a+ b̂1X1i + b̂2X2i ≥ Yi} .(5.5)
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We have found that

[
YM(2, 1)− YM(1, 1)
YM(1, 2)− YM(1, 1)

]
−

[
X1(2, 1)−X1(1, 1) X2(2, 1)−X2(1, 1)
X1(1, 2)−X1(1, 1) X2(1, 2)−X2(1, 1)

] [
b̂1 − b1
b̂2 − b2

]
p−→ 0 .

For instance, if we assume that

rank

 1 X1(2, 1) X2(2, 1)
1 X1(1, 2) X2(1, 2)
1 X1(1, 1) X2(1, 1)

 = 3 ,(5.6)

then b̂1 − b1
p−→ 0 and b̂2 − b2

p−→ 0 .
Let Zn(2, 1) = n(2, 1)[maxI(2,1) Yi − (a+ b1X1(2, 1) + b2X2(2, 1))],
Zn(1, 2) = n(1, 2)[maxI(1,2) Yi − (a+ b1X1(1, 2) + b2X2(1, 2))],
and Zn(1, 1) = n(1, 1)[maxI(1,1) Yi − (a+ b1X1(1, 1) + b2X2(1, 1))].
Then, we have the limiting exponential random variables Z(2, 1), Z(1, 2), and Z(1, 1)
with the joint distribution

G(z21, z12, z11) = exp[λ(z21 + z12 + z11)] (z21 ≤ 0, z12 ≤ 0, z11 ≤ 0) .

Then, the asymptotic distribution of n[b̂1 − b1, b̂2 − b2] is the weighted average of
exponential distribution in the expression

Zb =

[
X1(2, 1)−X1(1, 1) X2(2, 1)−X2(1, 1)
X1(1, 2)−X1(1, 1) X2(1, 2)−X2(1, 1)

]−1
[
λ(2, 1) 0 −λ(1, 1)

0 λ(1, 2) −λ(1.1)

]  Z(2, 1)
Z(1, 2)
Z(1, 1)

 ,

where λ(2, 1) = limn→∞ n/n(2, 1), λ(1, 2) = limn→∞ n/n(1, 2), and
λ(1, 2) = limn→∞ n/n(1, 1) as n, n(2, 1), n(1, 2), n(1, 1) → ∞.

Under the same setting with x = X̄, ĥm(x) − hm(x)
p−→ 0 , and the asymptotic

distribution of the estimated hyper-planes is given by

n[ĥm(x)− hm(x)]
p−→ Zh = Za + Z‘

bx ,(5.7)

where x = (x1, x2)
‘.

This expression can be directly generalized to the cases when p ≥ 2.

When the sample size is not large while the number of explanatory variables p is
greater than 1, the number of data in each cell may be small. Then the estimation
procedure may not be easily used. To avoid this problem, one may use a different
procedure to use multidimension cells. To illustrate an alternative method, we use
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the case when p = 2 and we denote each cell as I(j, k) (j, k = 1, 2). We also use the
notations such that for j, k = 1, 2

∪
k I(j, k) = I(j, ·) and ∪

j I(j, k) = I(·, k).
To cope with this problem, we use the relation

P ( max∪
k
I(2,k)

Yi ≤ zn) = P ( max∪
k
I(2,k)

[Ui + a+ b1X1i + b2X2i] ≤ zn) .

Then we can develop the similar evaluation except the fact that the resulting limit
random variables Zn(j, · · ·) and Zn(·, k) (j, k = 1, 2) are correlated even when n →
∞. The limiting distributions of estimators of coefficients can be expressed by the
limiting joint random variables Z(j, · · ·) and Z(·, k) (j, k = 1, 2), which follow

G(zj,·, z·,k) = exp{λ
∑
j,k

[zj,· ∧ z·,k]} (j, k = 1, 2),(5.8)

where zj,·,· ≤ 0, z·,k,· ≤ 0, λ(j, k) ∼ n/n(j, k).

Then, the asymptotic distribution of n[b̂1 − b1, b̂2 − b2] is the weighted average of
exponential distribution in the expression of

Z∗b =

[
X1(2, ·)−X1(1, ·) X2(2, ·)−X2(1, ·)
X1(·, 2)−X1(·, 1) X2(·, 2)−X2(·, 1)

]−1
(5.9)

×
[
λ(2, ·) −λ(1, ·) 0 0

0 0 λ(·, 2) −λ(·, 1)

] 
Z(2, ·)
Z(1, ·)
Z(·, 2)
Z(·, 1)

 .
This representation can be extended straightforwardly to the cases when p ≥ 3.
The detail of this procedure is currently investigation, but it seems that we need a
simulation-based evaluation of the limiting distribution.

It is also straightforward to extend our analysis in this section to the general case
when p ≥ 2 such that for k = 1, · · · ,m,

Yi = ak +
p∑

j=1

bjkXji + Ui (i = 1, · · · , n) ,(5.10)

where Ui ≤ 0.

6. Efficient Frontier and Measurement Errors

There are cases when we should not ignore the measurement errors in inputs and
outputs. Let Vi be the measurement errors for the i-th observation. When Vi < 0,
it may not be possible to distinguish it from the inefficiency term, which does not
take any positive value. Hence it is reasonable to consider the case when Vi ≥ 0.
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A typical case would be Vi = cf(Xi)
∗, where f(Xi)

∗ is the hidden efficient frontier
and c is a non-negative measurement error rate. Then we have the statistical model
(2.1) as Yi = f(Xi) + Ui , where

f(Xi) = f(Xi)
∗(1 + c) ,(6.1)

Then, it may be reasonable to to estimate the frontier function without measure-
ment errors by f̂(Xi)

∗ = f̂(Xi)/(1 + c).
There can be some examples of reporting inaccurate numbers and accounting mis-
conducts as typical examples of positive measurement errors, their roles could not
be ignorable.

7. An Empirical Example : Life-Insurance Industry in Japan

As an empirical example, we have applied the SDEA method in the previous
sections to the accounting data sets on the life-insurance industry in Japan, which
are public data during 2017-2021 fiscal years in “Seimei-Hoken-Jigyou Gaikyou”
(Seimei-Hoken-Kyokai (2021)).

We have used the data as (1) works：office workers, (2) capital：total shareholders’
equity, (3) expense：operating expenses, (4) insurance：total payment of insurance
benefits, and (5) income：ordinary income. The output variable is the ordinary
income.

Since there are 41 companies in this industry, which is rather small, we have used
the first method to estimate the efficient frontier function. Among 41, there is one
firm, Kanpo-Seimei, which is quite different from others because of the long-history
and some institutional changes, and then we need to exclude this firm to estimate
the efficiency frontier. Apparently, the monotonicity and concavity assumption on
the efficient frontier is not satisfied as we illustrated the problem in Figure 3. It is
appropriate to treat Kanpo-Seimei as an outlier and should be deleted, which is not
discussed in detail here. Here we just mention to the fact that the historical role of
the life-insurance industry has quite different from other industrialized countries like
U.K. and U.S.. There were some historical as well as institutional reasons why there
are a few major life-insurance companies in Japan and the number of life-insurance
companies is small in comparison with those in the U.S. and U.K.. Kanpo-Seimei
was originally a part of the National Post Office in Japan, and it was privatized in
2006, for instance. See Kubo (2011) for some details of the historical development
of the life and non-life insurance industries in Japan.

In our analysis we have focused on the data on 40 companies in our empirical
analysis. We used the number of office workers as an input and ordinary income
as the output and estimated the 2021 efficient frontier in Figure 4. We also used
Capital as an input and ordinary income as the output and estimated the 2021
efficient frontier in Figure 5. From these two figures we have found that we can
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Figure 3: An outlier situation : In the life-insurance industry in Japan, there is an
outlier and there are some reasons why it is.

estimate the frontiers in a reasonable manner. That is, there are several companies,
which are close to the efficient frontier and there are other inefficient companies. We
also found that there are only several large companies in the life-insurance industry,
the estimation of the efficient frontier in the right-hand area is statistically a difficult
problem.

8. Concluding Remarks

In this paper we have developed a SDEA method based on the statistical modeling
of linear regression and extreme value distributions, which may be new to both
the operations reserach and statistics communities. We also report an empirical
analysis of life-insurance industry in Japan as an application. Because the number
of data is quite small, we have used the linear regression based method for estimating
coefficients. When the number of data is large, however, we have shown that we
have some efficiency gain in the statistical estimation if we use the statistical extreme
value (SEVT) method.

There are a number of problems in the SDEA method remained to be inves-
tigated. The statistical models treated in this paper can be generalized to several
directions including multivariate inputs and outputs. Then, it is not a trivial task to
impose the monotonicity and concavity restrictions when we estimate the estimated
frontiers from a finite set of data. If we have a huge number of data, it may be
possible to use may explanatory variables.

Another important statistical issue would be that there can be several procedures
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Figure 4: An estimeted frontier : Input is Workers and output is Income.
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Figure 5: An estimeted frontier : Input is Capital and output is Income.
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to choose the number of intervals (m) in data analysis and we need to develop some
criterion of selecting the number of interval nodes (m) in an optimal way given a
finite number of data.

We are currently investigating various aspects of theoretical problems and appli-
cations of the SDEA method proposed in the present work. We are also developing
the R-programs for numerical evaluations.
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